Almost Integer Rock Garden

Problem Statement :

```ictor is building a Japanese rock garden in his  square courtyard. He overlaid the courtyard with a Cartesian coordinate system so that any point  in the courtyard has coordinates  and . Victor wants to place  stones in the garden according to the following rules:

The center of each stone is located at some point , where  and  are integers .
The coordinates of all twelve stones are pairwise distinct.
The Euclidean distance from the center of any stone to the origin is not an integer.
The sum of Euclidean distances between all twelve points and the origin is an almost integer, meaning the absolute difference between this sum and an integer must be .
Given the values of  and  for the first stone Victor placed in the garden, place the remaining  stones according to the requirements above. For each stone you place, print two space-separated integers on a new line describing the respective  and  coordinates of the stone's location.

Input Format

Two space-separated integers describing the respective values of  and  for the first stone's location.

Output Format

Print  lines, where each line contains two space-separated integers describing the respective values of  and  for a stone's location.```

Solution :

```                            ```Solution in C :

In   C  :

#include <stdio.h>
#include <math.h>

int pnt[][12][16][2]={
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-4}, {-12,4}, {-4,-12}, {-4,12}, {4,-12}, {4,12}, {12,-4}, {12,4}, },{{-12,-4}, {-12,4}, {-4,-12}, {-4,12}, {4,-12}, {4,12}, {12,-4}, {12,4}, },{{-11,-1}, {-11,1}, {-1,-11}, {-1,11}, {1,-11}, {1,11}, {11,-1}, {11,1}, },{{-10,-3}, {-10,3}, {-3,-10}, {-3,10}, {3,-10}, {3,10}, {10,-3}, {10,3}, },{{-9,-6}, {-9,6}, {-6,-9}, {-6,9}, {6,-9}, {6,9}, {9,-6}, {9,6}, },{{-12,-3}, {-12,3}, {-3,-12}, {-3,12}, {3,-12}, {3,12}, {12,-3}, {12,3}, },{{-12,-2}, {-12,2}, {-2,-12}, {-2,12}, {2,-12}, {2,12}, {12,-2}, {12,2}, },{{-11,-7}, {-11,7}, {-7,-11}, {-7,11}, {7,-11}, {7,11}, {11,-7}, {11,7}, },{{-11,-1}, {-11,1}, {-1,-11}, {-1,11}, {1,-11}, {1,11}, {11,-1}, {11,1}, },{{-6,-6}, {-6,6}, {6,-6}, {6,6}, },{{-5,-4}, {-5,4}, {-4,-5}, {-4,5}, {4,-5}, {4,5}, {5,-4}, {5,4}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-7,-7}, {-7,7}, {7,-7}, {7,7}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-6,-2}, {-6,2}, {-2,-6}, {-2,6}, {2,-6}, {2,6}, {6,-2}, {6,2}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-3,-1}, {-3,1}, {-1,-3}, {-1,3}, {1,-3}, {1,3}, {3,-1}, {3,1}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-7,-7}, {-7,7}, {7,-7}, {7,7}, },{{-2,-1}, {-2,1}, {-1,-2}, {-1,2}, {1,-2}, {1,2}, {2,-1}, {2,1}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-8,-4}, {-8,4}, {-4,-8}, {-4,8}, {4,-8}, {4,8}, {8,-4}, {8,4}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-6,-6}, {-6,6}, {6,-6}, {6,6}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-1,-1}, {-1,1}, {1,-1}, {1,1}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-7,-1}, {-7,1}, {-5,-5}, {-5,5}, {-1,-7}, {-1,7}, {1,-7}, {1,7}, {5,-5}, {5,5}, {7,-1}, {7,1}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-2,-2}, {-2,2}, {2,-2}, {2,2}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-4,-2}, {-4,2}, {-2,-4}, {-2,4}, {2,-4}, {2,4}, {4,-2}, {4,2}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-7,-7}, {-7,7}, {7,-7}, {7,7}, },{{-6,-3}, {-6,3}, {-3,-6}, {-3,6}, {3,-6}, {3,6}, {6,-3}, {6,3}, }},
{{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-4,-4}, {-4,4}, {4,-4}, {4,4}, },{{-3,-3}, {-3,3}, {3,-3}, {3,3}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-12,-7}, {-12,7}, {-7,-12}, {-7,12}, {7,-12}, {7,12}, {12,-7}, {12,7}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, }},
{{{-12,-11}, {-12,11}, {-11,-12}, {-11,12}, {11,-12}, {11,12}, {12,-11}, {12,11}, },{{-12,-11}, {-12,11}, {-11,-12}, {-11,12}, {11,-12}, {11,12}, {12,-11}, {12,11}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-2,-1}, {-2,1}, {-1,-2}, {-1,2}, {1,-2}, {1,2}, {2,-1}, {2,1}, },{{-12,-1}, {-12,1}, {-9,-8}, {-9,8}, {-8,-9}, {-8,9}, {-1,-12}, {-1,12}, {1,-12}, {1,12}, {8,-9}, {8,9}, {9,-8}, {9,8}, {12,-1}, {12,1}, },{{-11,-9}, {-11,9}, {-9,-11}, {-9,11}, {9,-11}, {9,11}, {11,-9}, {11,9}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-9,-2}, {-9,2}, {-7,-6}, {-7,6}, {-6,-7}, {-6,7}, {-2,-9}, {-2,9}, {2,-9}, {2,9}, {6,-7}, {6,7}, {7,-6}, {7,6}, {9,-2}, {9,2}, },{{-9,-1}, {-9,1}, {-1,-9}, {-1,9}, {1,-9}, {1,9}, {9,-1}, {9,1}, },{{-6,-6}, {-6,6}, {6,-6}, {6,6}, }},
{{{-11,-10}, {-11,10}, {-10,-11}, {-10,11}, {10,-11}, {10,11}, {11,-10}, {11,10}, },{{-10,-7}, {-10,7}, {-7,-10}, {-7,10}, {7,-10}, {7,10}, {10,-7}, {10,7}, },{{-9,-6}, {-9,6}, {-6,-9}, {-6,9}, {6,-9}, {6,9}, {9,-6}, {9,6}, },{{-9,-5}, {-9,5}, {-5,-9}, {-5,9}, {5,-9}, {5,9}, {9,-5}, {9,5}, },{{-7,-5}, {-7,5}, {-5,-7}, {-5,7}, {5,-7}, {5,7}, {7,-5}, {7,5}, },{{-7,-3}, {-7,3}, {-3,-7}, {-3,7}, {3,-7}, {3,7}, {7,-3}, {7,3}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, },{{-6,-5}, {-6,5}, {-5,-6}, {-5,6}, {5,-6}, {5,6}, {6,-5}, {6,5}, }},
{{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-11,-1}, {-11,1}, {-1,-11}, {-1,11}, {1,-11}, {1,11}, {11,-1}, {11,1}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-12,-11}, {-12,11}, {-11,-12}, {-11,12}, {11,-12}, {11,12}, {12,-11}, {12,11}, },{{-11,-7}, {-11,7}, {-7,-11}, {-7,11}, {7,-11}, {7,11}, {11,-7}, {11,7}, },{{-11,-4}, {-11,4}, {-4,-11}, {-4,11}, {4,-11}, {4,11}, {11,-4}, {11,4}, },{{-11,-1}, {-11,1}, {-1,-11}, {-1,11}, {1,-11}, {1,11}, {11,-1}, {11,1}, },{{-9,-2}, {-9,2}, {-7,-6}, {-7,6}, {-6,-7}, {-6,7}, {-2,-9}, {-2,9}, {2,-9}, {2,9}, {6,-7}, {6,7}, {7,-6}, {7,6}, {9,-2}, {9,2}, },{{-9,-2}, {-9,2}, {-7,-6}, {-7,6}, {-6,-7}, {-6,7}, {-2,-9}, {-2,9}, {2,-9}, {2,9}, {6,-7}, {6,7}, {7,-6}, {7,6}, {9,-2}, {9,2}, }},
{{{-12,-1}, {-12,1}, {-9,-8}, {-9,8}, {-8,-9}, {-8,9}, {-1,-12}, {-1,12}, {1,-12}, {1,12}, {8,-9}, {8,9}, {9,-8}, {9,8}, {12,-1}, {12,1}, },{{-11,-4}, {-11,4}, {-4,-11}, {-4,11}, {4,-11}, {4,11}, {11,-4}, {11,4}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-2}, {-8,2}, {-2,-8}, {-2,8}, {2,-8}, {2,8}, {8,-2}, {8,2}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-7,-1}, {-7,1}, {-5,-5}, {-5,5}, {-1,-7}, {-1,7}, {1,-7}, {1,7}, {5,-5}, {5,5}, {7,-1}, {7,1}, },{{-4,-1}, {-4,1}, {-1,-4}, {-1,4}, {1,-4}, {1,4}, {4,-1}, {4,1}, }},
{{{-12,-2}, {-12,2}, {-2,-12}, {-2,12}, {2,-12}, {2,12}, {12,-2}, {12,2}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-6}, {-10,6}, {-6,-10}, {-6,10}, {6,-10}, {6,10}, {10,-6}, {10,6}, },{{-10,-4}, {-10,4}, {-4,-10}, {-4,10}, {4,-10}, {4,10}, {10,-4}, {10,4}, },{{-8,-1}, {-8,1}, {-7,-4}, {-7,4}, {-4,-7}, {-4,7}, {-1,-8}, {-1,8}, {1,-8}, {1,8}, {4,-7}, {4,7}, {7,-4}, {7,4}, {8,-1}, {8,1}, },{{-4,-4}, {-4,4}, {4,-4}, {4,4}, },{{-12,-8}, {-12,8}, {-8,-12}, {-8,12}, {8,-12}, {8,12}, {12,-8}, {12,8}, },{{-9,-3}, {-9,3}, {-3,-9}, {-3,9}, {3,-9}, {3,9}, {9,-3}, {9,3}, },{{-8,-3}, {-8,3}, {-3,-8}, {-3,8}, {3,-8}, {3,8}, {8,-3}, {8,3}, },{{-8,-1}, {-8,1}, {-7,-4}, {-7,4}, {-4,-7}, {-4,7}, {-1,-8}, {-1,8}, {1,-8}, {1,8}, {4,-7}, {4,7}, {7,-4}, {7,4}, {8,-1}, {8,1}, },{{-7,-5}, {-7,5}, {-5,-7}, {-5,7}, {5,-7}, {5,7}, {7,-5}, {7,5}, },{{-5,-2}, {-5,2}, {-2,-5}, {-2,5}, {2,-5}, {2,5}, {5,-2}, {5,2}, }},
{{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-8,-2}, {-8,2}, {-2,-8}, {-2,8}, {2,-8}, {2,8}, {8,-2}, {8,2}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-3,-1}, {-3,1}, {-1,-3}, {-1,3}, {1,-3}, {1,3}, {3,-1}, {3,1}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-9,-5}, {-9,5}, {-5,-9}, {-5,9}, {5,-9}, {5,9}, {9,-5}, {9,5}, },{{-8,-8}, {-8,8}, {8,-8}, {8,8}, },{{-8,-1}, {-8,1}, {-7,-4}, {-7,4}, {-4,-7}, {-4,7}, {-1,-8}, {-1,8}, {1,-8}, {1,8}, {4,-7}, {4,7}, {7,-4}, {7,4}, {8,-1}, {8,1}, },{{-5,-3}, {-5,3}, {-3,-5}, {-3,5}, {3,-5}, {3,5}, {5,-3}, {5,3}, }},
{{{-12,-6}, {-12,6}, {-6,-12}, {-6,12}, {6,-12}, {6,12}, {12,-6}, {12,6}, },{{-12,-6}, {-12,6}, {-6,-12}, {-6,12}, {6,-12}, {6,12}, {12,-6}, {12,6}, },{{-11,-10}, {-11,10}, {-10,-11}, {-10,11}, {10,-11}, {10,11}, {11,-10}, {11,10}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-9,-9}, {-9,9}, {9,-9}, {9,9}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-7}, {-8,7}, {-7,-8}, {-7,8}, {7,-8}, {7,8}, {8,-7}, {8,7}, },{{-5,-2}, {-5,2}, {-2,-5}, {-2,5}, {2,-5}, {2,5}, {5,-2}, {5,2}, },{{-1,-1}, {-1,1}, {1,-1}, {1,1}, }},
{{{-11,-10}, {-11,10}, {-10,-11}, {-10,11}, {10,-11}, {10,11}, {11,-10}, {11,10}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-7}, {-8,7}, {-7,-8}, {-7,8}, {7,-8}, {7,8}, {8,-7}, {8,7}, },{{-5,-2}, {-5,2}, {-2,-5}, {-2,5}, {2,-5}, {2,5}, {5,-2}, {5,2}, },{{-4,-2}, {-4,2}, {-2,-4}, {-2,4}, {2,-4}, {2,4}, {4,-2}, {4,2}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-11,-2}, {-11,2}, {-10,-5}, {-10,5}, {-5,-10}, {-5,10}, {-2,-11}, {-2,11}, {2,-11}, {2,11}, {5,-10}, {5,10}, {10,-5}, {10,5}, {11,-2}, {11,2}, },{{-10,-10}, {-10,10}, {10,-10}, {10,10}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, }},
{{{-12,-6}, {-12,6}, {-6,-12}, {-6,12}, {6,-12}, {6,12}, {12,-6}, {12,6}, },{{-12,-6}, {-12,6}, {-6,-12}, {-6,12}, {6,-12}, {6,12}, {12,-6}, {12,6}, },{{-11,-10}, {-11,10}, {-10,-11}, {-10,11}, {10,-11}, {10,11}, {11,-10}, {11,10}, },{{-10,-10}, {-10,10}, {10,-10}, {10,10}, },{{-5,-2}, {-5,2}, {-2,-5}, {-2,5}, {2,-5}, {2,5}, {5,-2}, {5,2}, },{{-5,-1}, {-5,1}, {-1,-5}, {-1,5}, {1,-5}, {1,5}, {5,-1}, {5,1}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-10,-1}, {-10,1}, {-1,-10}, {-1,10}, {1,-10}, {1,10}, {10,-1}, {10,1}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-7}, {-8,7}, {-7,-8}, {-7,8}, {7,-8}, {7,8}, {8,-7}, {8,7}, },{{-5,-1}, {-5,1}, {-1,-5}, {-1,5}, {1,-5}, {1,5}, {5,-1}, {5,1}, }},
{{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-11,-5}, {-11,5}, {-5,-11}, {-5,11}, {5,-11}, {5,11}, {11,-5}, {11,5}, },{{-10,-9}, {-10,9}, {-9,-10}, {-9,10}, {9,-10}, {9,10}, {10,-9}, {10,9}, },{{-6,-6}, {-6,6}, {6,-6}, {6,6}, },{{-6,-3}, {-6,3}, {-3,-6}, {-3,6}, {3,-6}, {3,6}, {6,-3}, {6,3}, },{{-6,-1}, {-6,1}, {-1,-6}, {-1,6}, {1,-6}, {1,6}, {6,-1}, {6,1}, },{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-12,-4}, {-12,4}, {-4,-12}, {-4,12}, {4,-12}, {4,12}, {12,-4}, {12,4}, },{{-12,-2}, {-12,2}, {-2,-12}, {-2,12}, {2,-12}, {2,12}, {12,-2}, {12,2}, },{{-11,-4}, {-11,4}, {-4,-11}, {-4,11}, {4,-11}, {4,11}, {11,-4}, {11,4}, },{{-10,-8}, {-10,8}, {-8,-10}, {-8,10}, {8,-10}, {8,10}, {10,-8}, {10,8}, }},
{{{-10,-9}, {-10,9}, {-9,-10}, {-9,10}, {9,-10}, {9,10}, {10,-9}, {10,9}, },{{-10,-9}, {-10,9}, {-9,-10}, {-9,10}, {9,-10}, {9,10}, {10,-9}, {10,9}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-9,-1}, {-9,1}, {-1,-9}, {-1,9}, {1,-9}, {1,9}, {9,-1}, {9,1}, },{{-7,-5}, {-7,5}, {-5,-7}, {-5,7}, {5,-7}, {5,7}, {7,-5}, {7,5}, },{{-6,-1}, {-6,1}, {-1,-6}, {-1,6}, {1,-6}, {1,6}, {6,-1}, {6,1}, },{{-12,-3}, {-12,3}, {-3,-12}, {-3,12}, {3,-12}, {3,12}, {12,-3}, {12,3}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, },{{-7,-2}, {-7,2}, {-2,-7}, {-2,7}, {2,-7}, {2,7}, {7,-2}, {7,2}, },{{-5,-1}, {-5,1}, {-1,-5}, {-1,5}, {1,-5}, {1,5}, {5,-1}, {5,1}, },{{-4,-2}, {-4,2}, {-2,-4}, {-2,4}, {2,-4}, {2,4}, {4,-2}, {4,2}, }},
{{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-12,-1}, {-12,1}, {-9,-8}, {-9,8}, {-8,-9}, {-8,9}, {-1,-12}, {-1,12}, {1,-12}, {1,12}, {8,-9}, {8,9}, {9,-8}, {9,8}, {12,-1}, {12,1}, },{{-11,-8}, {-11,8}, {-8,-11}, {-8,11}, {8,-11}, {8,11}, {11,-8}, {11,8}, },{{-11,-4}, {-11,4}, {-4,-11}, {-4,11}, {4,-11}, {4,11}, {11,-4}, {11,4}, },{{-8,-2}, {-8,2}, {-2,-8}, {-2,8}, {2,-8}, {2,8}, {8,-2}, {8,2}, },{{-7,-2}, {-7,2}, {-2,-7}, {-2,7}, {2,-7}, {2,7}, {7,-2}, {7,2}, },{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-12,-10}, {-12,10}, {-10,-12}, {-10,12}, {10,-12}, {10,12}, {12,-10}, {12,10}, },{{-11,-6}, {-11,6}, {-6,-11}, {-6,11}, {6,-11}, {6,11}, {11,-6}, {11,6}, },{{-9,-9}, {-9,9}, {9,-9}, {9,9}, },{{-8,-4}, {-8,4}, {-4,-8}, {-4,8}, {4,-8}, {4,8}, {8,-4}, {8,4}, },{{-8,-1}, {-8,1}, {-7,-4}, {-7,4}, {-4,-7}, {-4,7}, {-1,-8}, {-1,8}, {1,-8}, {1,8}, {4,-7}, {4,7}, {7,-4}, {7,4}, {8,-1}, {8,1}, }},
{{{-12,-8}, {-12,8}, {-8,-12}, {-8,12}, {8,-12}, {8,12}, {12,-8}, {12,8}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-10,-2}, {-10,2}, {-2,-10}, {-2,10}, {2,-10}, {2,10}, {10,-2}, {10,2}, },{{-6,-3}, {-6,3}, {-3,-6}, {-3,6}, {3,-6}, {3,6}, {6,-3}, {6,3}, },{{-3,-2}, {-3,2}, {-2,-3}, {-2,3}, {2,-3}, {2,3}, {3,-2}, {3,2}, },{{-3,-1}, {-3,1}, {-1,-3}, {-1,3}, {1,-3}, {1,3}, {3,-1}, {3,1}, },{{-7,-5}, {-7,5}, {-5,-7}, {-5,7}, {5,-7}, {5,7}, {7,-5}, {7,5}, },{{-7,-1}, {-7,1}, {-5,-5}, {-5,5}, {-1,-7}, {-1,7}, {1,-7}, {1,7}, {5,-5}, {5,5}, {7,-1}, {7,1}, },{{-6,-5}, {-6,5}, {-5,-6}, {-5,6}, {5,-6}, {5,6}, {6,-5}, {6,5}, },{{-6,-4}, {-6,4}, {-4,-6}, {-4,6}, {4,-6}, {4,6}, {6,-4}, {6,4}, },{{-6,-3}, {-6,3}, {-3,-6}, {-3,6}, {3,-6}, {3,6}, {6,-3}, {6,3}, },{{-5,-1}, {-5,1}, {-1,-5}, {-1,5}, {1,-5}, {1,5}, {5,-1}, {5,1}, }},
{{{-11,-11}, {-11,11}, {11,-11}, {11,11}, },{{-10,-10}, {-10,10}, {10,-10}, {10,10}, },{{-10,-9}, {-10,9}, {-9,-10}, {-9,10}, {9,-10}, {9,10}, {10,-9}, {10,9}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, },{{-6,-1}, {-6,1}, {-1,-6}, {-1,6}, {1,-6}, {1,6}, {6,-1}, {6,1}, },{{-5,-3}, {-5,3}, {-3,-5}, {-3,5}, {3,-5}, {3,5}, {5,-3}, {5,3}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-10,-6}, {-10,6}, {-6,-10}, {-6,10}, {6,-10}, {6,10}, {10,-6}, {10,6}, },{{-10,-6}, {-10,6}, {-6,-10}, {-6,10}, {6,-10}, {6,10}, {10,-6}, {10,6}, },{{-9,-5}, {-9,5}, {-5,-9}, {-5,9}, {5,-9}, {5,9}, {9,-5}, {9,5}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-8,-7}, {-8,7}, {-7,-8}, {-7,8}, {7,-8}, {7,8}, {8,-7}, {8,7}, }},
{{{-12,-12}, {-12,12}, {12,-12}, {12,12}, },{{-10,-9}, {-10,9}, {-9,-10}, {-9,10}, {9,-10}, {9,10}, {10,-9}, {10,9}, },{{-9,-5}, {-9,5}, {-5,-9}, {-5,9}, {5,-9}, {5,9}, {9,-5}, {9,5}, },{{-9,-4}, {-9,4}, {-4,-9}, {-4,9}, {4,-9}, {4,9}, {9,-4}, {9,4}, },{{-6,-1}, {-6,1}, {-1,-6}, {-1,6}, {1,-6}, {1,6}, {6,-1}, {6,1}, },{{-5,-3}, {-5,3}, {-3,-5}, {-3,5}, {3,-5}, {3,5}, {5,-3}, {5,3}, },{{-11,-3}, {-11,3}, {-9,-7}, {-9,7}, {-7,-9}, {-7,9}, {-3,-11}, {-3,11}, {3,-11}, {3,11}, {7,-9}, {7,9}, {9,-7}, {9,7}, {11,-3}, {11,3}, },{{-10,-6}, {-10,6}, {-6,-10}, {-6,10}, {6,-10}, {6,10}, {10,-6}, {10,6}, },{{-10,-6}, {-10,6}, {-6,-10}, {-6,10}, {6,-10}, {6,10}, {10,-6}, {10,6}, },{{-9,-9}, {-9,9}, {9,-9}, {9,9}, },{{-8,-7}, {-8,7}, {-7,-8}, {-7,8}, {7,-8}, {7,8}, {8,-7}, {8,7}, },{{-8,-5}, {-8,5}, {-5,-8}, {-5,8}, {5,-8}, {5,8}, {8,-5}, {8,5}, }},
};

int garden[25][25];

int main(void) {
int x, y;
int i, j, k, m, c;
long double d=0;
scanf("%d%d", &x, &y);
d+=sqrtl(x*x+y*y);
garden[x+12][y+12]=1;
for (i=0; i<sizeof(pnt)/sizeof(pnt[0]); i++) {
for (j=0; j<12; j++) {
for (k=0; k<16 && pnt[i][j][k][0]; k++) {
if (pnt[i][j][k][0]==x && pnt[i][j][k][1]==y)
break;
}
if (k<16 && pnt[i][j][k][0]) {
for (k=0, c=0; c<11; k++) {
if (j==k)
continue;
for (m=0; m<16 && pnt[i][k][m][0]; m++) {
if (!garden[pnt[i][k][m][0]+12][pnt[i][k][m][1]+12]) {
garden[pnt[i][k][m][0]+12][pnt[i][k][m][1]+12]=1;
printf("%d %d\n", pnt[i][k][m][0], pnt[i][k][m][1]);
//              d+=sqrtl(pnt[i][k][m][0]*pnt[i][k][m][0]+pnt[i][k][m][1]*pnt[i][k][m][1]);
c++;
break;
}
}
}
//        printf("%.60Lf\n", d);
return 0;
}
}
}
return 0;
}```
```

```                        ```Solution in C++ :

In   C  ++  :

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef int _loop_int;
#define REP(i,n) for(_loop_int i=0;i<(_loop_int)(n);++i)
#define FOR(i,a,b) for(_loop_int i=(_loop_int)(a);i<(_loop_int)(b);++i)
#define FORR(i,a,b) for(_loop_int i=(_loop_int)(b)-1;i>=(_loop_int)(a);--i)

#define DEBUG(x) cout<<#x<<": "<<x<<endl
#define DEBUG_VEC(v) cout<<#v<<":";REP(i,v.size())cout<<" "<<v[i];cout<<endl
#define ALL(a) (a).begin(),(a).end()

#define CHMIN(a,b) a=min((a),(b))
#define CHMAX(a,b) a=max((a),(b))

inline int pack(int x,int y){
return (x+25)*64 + (y+25);
}
inline void unpack(int p,int &x,int &y){
x = (p/64)-25;
y = (p%64)-25;
}

map<double,vi> mp;
vector<double> V;
int n;
map<double,int> rev;

vi ids;

void appen(int a,int b,int c,int d,int e,int f,int g,int h,int i,int j,int k,int l){
vi v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
v.push_back(d);
v.push_back(e);
v.push_back(f);
v.push_back(g);
v.push_back(h);
v.push_back(i);
v.push_back(j);
v.push_back(k);
v.push_back(l);
double sum = 0.0;
REP(z,v.size()){
ids[v[z]] = demi;
sum += V[v[z]];
}
// printf("%.15f\n",sum);
}

int main(){
FOR(x,-12,13)FOR(y,-12,13){
int dst = x*x + y*y;
double sq = sqrt(dst);
int sqi = sq;
if(sqi!=sq)mp[sq].push_back(pack(x,y));
}
{
map<double,vi>::iterator iter = mp.begin();
while(iter != mp.end()){
double d = iter->first;
V.push_back(d);
iter++;
}
}
n = V.size();
REP(i,n)rev[V[i]] = i;
// go
ids.assign(n,-1);
appen(0,1,3,25,41,43,62,8,10,20,34,39);
appen(2,1,3,25,41,43,62,6,8,20,34,39);
appen(4,13,27,65,8,45,49,25,28,37,43,51);
appen(5,30,31,45,22,31,46,13,16,31,52,54);
appen(7,1,3,25,8,15,34,16,20,39,43,62);
appen(9,10,41,48,21,24,62,21,25,30,38,44);
appen(11,37,43,67,12,35,44,29,31,44,53,57);
appen(14,21,44,66,21,36,37,3,36,37,54,62);
appen(17,1,3,25,41,43,62,4,8,16,20,34);
appen(18,8,27,31,7,12,57,25,29,31,50,57);
appen(19,15,43,59,33,47,59,4,7,30,32,59);
appen(23,1,30,66,46,54,61,27,28,31,33,66);
appen(26,1,3,25,34,43,62,1,8,16,20,39);
appen(40,11,38,43,26,36,65,0,3,27,59,62);
appen(42,44,48,49,18,30,66,18,28,31,40,61);
appen(55,0,24,40,49,54,55,27,29,40,48,49);
appen(56,3,6,25,0,34,43,0,8,20,39,62);
appen(58,45,53,65,26,51,65,18,21,22,46,65);
appen(60,26,34,63,31,33,41,9,15,31,34,37);
appen(64,12,35,37,43,44,60,11,29,31,44,57);

int xx,yy;
scanf("%d%d",&xx,&yy);
double vv = sqrt(xx*xx+yy*yy);
int id = ids[rev[vv]];
bool poyo = false;
REP(i,vec.size()){
double ww = V[vec[i]];
if(!poyo && ww==vv){
poyo = true;
continue;
}
while(true){
int xxx,yyy;
unpack(po,xxx,yyy);
if(xx==xxx && yy==yyy)continue;
printf("%d %d\n",xxx,yyy);
break;
}
}
return 0;
}```
```

```                        ```Solution in Java :

In  Java  :

import java.io.BufferedInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.*;

import static java.lang.Math.sqrt;

public class Solution {

static final Map<Integer, List<Integer>> squaresMap = new TreeMap<>();
static final int[] squares = new int[68];
static final int[] counts = new int[68];
static final double[] roots = new double[300];

static {
Map<Integer, List<Integer>> localSquareMap = squaresMap;
for (int x = 1; x <= 12; x++) {
for (int y = 1; y <= 12; y++) {
int sq = x * x + y * y;
double distance = sqrt(sq);
if (distance != (int) distance) {
List<Integer> list = localSquareMap.get(sq);
if (list == null) {
localSquareMap.put(sq, list = new ArrayList<>(3));
}
}
}
}

int[] localSquares = squares;
int index = 0;
for (Map.Entry<Integer, List<Integer>> entry : localSquareMap.entrySet()) {
localSquares[index] = entry.getKey();
counts[index] = entry.getValue().size();
roots[localSquares[index]] = sqrt(localSquares[index]);
index++;
}
}

static final long[] squaresSerialized = new long[942415];
static final double[] distancesUnsorted = new double[squaresSerialized.length];
static final double[] distancesSorted = new double[squaresSerialized.length];
static int count = 0;

static int privateCounter = 0;
static void iter(int index, int number, int[] four) {
if (number == 4) {
int localCount = Solution.count;
squaresSerialized[Solution.count] = serialize(four);
double distance = getDistance(four);
distancesUnsorted[Solution.count] = distancesSorted[Solution.count] = distance - (int) distance;
Solution.count = localCount + 1;
} else {
int[] localSquares = Solution.squares;
if (index == localSquares.length) return;
int[] localCounts = Solution.counts;
if (localCounts[index] != 0) {
localCounts[index]--;
four[number] = localSquares[index];
iter(index, number + 1, four);
localCounts[index]++;
}
iter(index + 1, number, four); // skip current number
}
}

private static double getDistance(int[] four) {
return roots[four[0]] + roots[four[1]] + roots[four[2]] + roots[four[3]];
}

private static long serialize(int[] four) {
return (((long) four[0]) << 48) + (((long) four[1]) << 32)
+ (((long) four[2]) << 16) + (((long) four[3]));
}

static int originalX;
static int originalY;

static void solve(int index, int number, int[] four) {
if (number == 4) {
if (privateCounter++ % 7 != 0) return;
double originalDistance = getDistance(four);
for (int k = count - 1; k >= 0; k -= 31) {
double candidateDistance = distancesSorted[k];
double distanceToSearch = originalDistance + candidateDistance;
distanceToSearch -= (int) distanceToSearch;
distanceToSearch = 1 - distanceToSearch;
int i = Arrays.binarySearch(distancesSorted, 0, count, distanceToSearch);
if (i >= 0) {
double result = originalDistance + candidateDistance + distancesSorted[i];
result -= (int) result;
if (result < 1e-12 || result > (1 - 1e-12)) {
}
} else {
i = -1 - i;

if (i < count) {
double result = originalDistance + candidateDistance + distancesSorted[i];
result -= (int) result;
if (result < 1e-12 || result > (1 - 1e-12)) {
}
}

if (i > 0) {
double result = originalDistance + candidateDistance + distancesSorted[i - 1];
result -= (int) result;
if (result < 1e-12 || result > (1 - 1e-12)) {
}
}
}
}
} else {
if (index == squares.length) return;
solve(index + 1, number, four); // skip current number
if (counts[index] != 0) {
counts[index]--;
four[number] = squares[index];
solve(index, number + 1, four);
counts[index]++;
}
}
}

private static final List<String> result = new ArrayList<>(12);
private static void printAnswer(int[] original, double candidateDistance, double distance) {
result.add(originalX + " " + originalY);

for (int i = 0; i < count; i++) {
if (Math.abs(distancesUnsorted[i] - candidateDistance) < 1e-13) {
long four = squaresSerialized[i];
addToResult((int) ((four >>> 48) & 0xFFFF));
addToResult((int) ((four >>> 32) & 0xFFFF));
addToResult((int) ((four >>> 16) & 0xFFFF));
break;
}
}

for (int i = 0; i < count; i++) {
if (Math.abs(distancesUnsorted[i] - distance) < 1e-13) {
long four = squaresSerialized[i];
addToResult((int) ((four >>> 48) & 0xFFFF));
addToResult((int) ((four >>> 32) & 0xFFFF));
addToResult((int) ((four >>> 16) & 0xFFFF));
break;
}
}
for (String s : result.subList(1, result.size())) {
System.out.println(s);
}

System.out.flush();
System.exit(1);
}

private static void addToResult(int square) {
for (int pair : squaresMap.get(square)) {
int x = pair / 16;
int y = pair % 16;

String s = x + " " + y;
if (!result.contains(s)) {
return;
}
s = y + " " + x;
if (!result.contains(s)) {
return;
}

x = -x;
s = x + " " + y;
if (!result.contains(s)) {
return;
}
s = y + " " + x;
if (!result.contains(s)) {
return;
}

y = -y;
s = x + " " + y;
if (!result.contains(s)) {
return;
}
s = y + " " + x;
if (!result.contains(s)) {
return;
}

x = -x;
s = x + " " + y;
if (!result.contains(s)) {
return;
}
s = y + " " + x;
if (!result.contains(s)) {
return;
}
}
}

public static void main(String[] args) {
iter(0, 0, new int[4]);
Arrays.sort(distancesSorted, 0, count);

int square = originalX * originalX + originalY * originalY;
int[] four = new int[4];
four[0] = square;
counts[Arrays.binarySearch(squares, square)] = 0;
solve(0, 1, four);
}

try {
while (c <= 32) {
}
boolean minus = false;
if (c == '-') {
minus = true;
}
int result = (c - '0');
while (c >= '0') {
result = result * 10 + (c - '0');
}
return minus ? -result : result;
} catch (IOException e) {
return -1; // should not happen
}
}

try {
while (c <= 32) {
}
boolean minus = false;
if (c == '-') {
minus = true;
}
long result = (c - '0');
while (c >= '0') {
result = result * 10 + (c - '0');
}
return minus ? -result : result;
} catch (IOException e) {
return -1; // should not happen
}
}

}

private static String readWord(char[] buffer) {
try {
while (c <= 32) {
}
int length = 0;
while (c > 32) {
buffer[length] = (char) c;
length++;
}
return String.valueOf(buffer, 0, length);
} catch (IOException ex) {
throw new RuntimeException(ex); // should not happen
}
}

private static String readLine(char[] buffer) {
try {
while (c <= 32) {
}
int length = 0;
while (c != '\n' && c != '\r' && c != -1) {
buffer[length] = (char) c;
length++;
}
return String.valueOf(buffer, 0, length);
} catch (IOException ex) {
throw new RuntimeException(ex); // should not happen
}
}

private static InputStream in = new BufferedInputStream(System.in);
private static final char[] SMALL_CHAR_BUFFER = new char[32];
}```
```

```                        ```Solution in Python :

In   Python3 :

__author__ = 'Ward'
import math
import sys

solutions = []
solutions.append({(7,11),(11,1),(-2,12),(5,4),(12,-3),(10,3),(9,6),(-12,-7),(1,11),(-6,-6),(12,-4),(4,12)})
solutions.append({(-12, 8), (9, -6), (10, 5), (-5, 1), (3, 3), (3, 1), (-10, -2), (2, 1), (7, 5), (2, 2), (6, 5), (9, 7)})
solutions.append({(10, 5), (-2, 1), (3, 3), (3, 1), (10, 2), (-7, -5), (12, 8), (2, 2), (6, -5), (5, 1), (-9, 6), (9, 7)})
solutions.append({(10, 2), (-2, 2), (12, 6), (3, -1), (-11, 3), (-7, -5), (2, 2), (5, 1), (9, 6), (1, 1), (6, 5), (12, 8)})
solutions.append({(9, 7), (3, 2), (-10, 2), (-5, 1), (7, 1), (7, -5), (3, 1), (-9, -6), (4, 2), (9, 6), (6, 5), (8, 4)})
solutions.append({(7, 3), (-12, -7), (6, -3), (11, 5), (12, 7), (9, 3), (7, 7), (-12, 7), (-3, 2), (10, 1), (4, 2), (9, 7)})
solutions.append({(7, 3), (10, 8), (-5, 1), (11, 4), (9, 1), (10, 6), (-11, -2), (12, 11), (6, -6), (12, 10), (-11, 7), (10, 9)})
solutions.append({(9, 7), (-9, -1), (12, 7), (-10, 4), (-3, 1), (11, 1), (12, 8), (8, -4), (12, 10), (10, 3), (1, 1), (5, 3)})
solutions.append({(11, 7), (3, 2), (10, 8), (11, 4), (9, 2), (-11, 1), (11, 2), (-7, 6), (-11, -1), (10, -8), (10, 1), (12, 11)})
solutions.append({(10, 8), (8, 3), (10, 5), (8, 1), (10, 6), (12, 6), (-11, 8), (-10, 5), (11, -5), (10, 3), (-11, -8), (12, 8)})
solutions.append({(12, 2), (8, 3), (-4, 4), (10, 4), (8, 1), (-10, -5), (10, 6), (9, 3), (7, 5), (-12, 8), (7, -4), (5, 2)})
solutions.append({(-9, 4), (11, 4), (12, 1), (8, 2), (7, 1), (-10, -8), (3, 1), (9, -4), (12, 4), (9, 4), (-12, 4), (4, 1)})
solutions.append({(10, 8), (12, 1), (11, 4), (5, 5), (-9, -4), (3, 1), (9, -4), (-6, 2), (6, 2), (9, 4), (-12, 4), (12, 3)})
solutions.append({(9, 7), (-12, 12), (-9, 5), (6, 1), (10, 6), (-10, -6), (9, -9), (8, 7), (9, 4), (8, 5), (10, 9), (5, 3)})
solutions.append({(-9, 4), (10, 10), (6, 1), (10, 6), (-11, -3), (10, -6), (8, 7), (-11, 11), (9, 5), (8, 5), (10, 9), (5, 3)})
solutions.append({(6, 4), (9, 7), (5, 5), (3, 1), (3, -2), (-7, -5), (-3, 2), (-12, 6), (5, 1), (9, 6), (6, 5), (10, 2)})
solutions.append({(8, -7), (3, 2), (5, 1), (-9, -1), (10, 7), (9, 2), (-7, 5), (11, 3), (-11, 4), (6, 2), (12, 10), (11, 6)})
solutions.append({(11, 4), (8, 2), (-12, -10), (11, 8), (8, 1), (9, 8), (9, 9), (-12, 10), (-7, 2), (12, -10), (11, 6), (8, 4)})
solutions.append({(10, 8), (12, 1), (9, 1), (7, 6), (9, 3), (11, 9), (2, 1), (-12, 11), (9, -4), (12, 11), (-6, 6), (-10, -1)})
solutions.append({(7, 3), (11, 10), (11, 5), (10, 7), (-8, -5), (-8, 5), (11, 3), (8, -5), (7, 5), (9, 5), (-9, 6), (6, 5)})
solutions.append({(12, 2), (9, 2), (10, 7), (-9, -4), (11, 9), (10, 6), (-12, 11), (9, -3), (8, 8), (11, 1), (-7, 2), (7, 2)})

solutions2 = []
for sol in solutions:
solutions2.append(list(map(lambda p:(p[0],-p[1]) , sol)))
solutions += solutions2

solutions2 = []
for sol in solutions:
solutions2.append(list(map(lambda p:(-p[0],p[1]) , sol)))
solutions += solutions2

solutions2 = []
for sol in solutions:
solutions2.append(list(map(lambda p:(p[1],p[0]) , sol)))
solutions += solutions2

for sol in solutions:
if (X,Y) in sol:
for p in sol:
if p != (X,Y):
print(p[0],p[1])
break```
```

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink