Zipped! python
Problem Statement :
zip([iterable, ...]) This function returns a list of tuples. The th tuple contains the th element from each of the argument sequences or iterables. If the argument sequences are of unequal lengths, then the returned list is truncated to the length of the shortest argument sequence. Sample Code >>> print zip([1,2,3,4,5,6],'Hacker') [(1, 'H'), (2, 'a'), (3, 'c'), (4, 'k'), (5, 'e'), (6, 'r')] >>> >>> print zip([1,2,3,4,5,6],[0,9,8,7,6,5,4,3,2,1]) [(1, 0), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5)] >>> >>> A = [1,2,3] >>> B = [6,5,4] >>> C = [7,8,9] >>> X = [A] + [B] + [C] >>> >>> print zip(*X) [(1, 6, 7), (2, 5, 8), (3, 4, 9)] Task The National University conducts an examination of N students in X subjects. Your task is to compute the average scores of each student. Average = sum of marks obtained in all the subjects by students / total number of subjects The format for the general mark sheet is: Student ID → ___1_____2_____3_____4_____5__ Subject 1 | 89 90 78 93 80 Subject 2 | 90 91 85 88 86 Subject 3 | 91 92 83 89 90.5 |______________________________ Average 90 91 82 90 85.5 Input Format The first line contains N and X separated by a space. The next X lines contains the space separated marks obtained by students in a particular subject. Constraints 0<N<=100 0<X<=100 Output Format Print the averages of all students on separate lines. The averages must be correct up to 1 decimal place.
Solution :
Solution in C :
N, X = map(int, input().split())
score = []
for _ in range(X):
score.append(list(map(float, input().split())))
for stud in list(zip(*score)):
print("%.1f" % (sum(stud) / len(stud)
View More Similar Problems
Polynomial Division
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie
View Solution →Costly Intervals
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the
View Solution →The Strange Function
One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting
View Solution →Self-Driving Bus
Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever
View Solution →Unique Colors
You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti
View Solution →Fibonacci Numbers Tree
Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T
View Solution →