XOR key
Problem Statement :
Xorq has invented an encryption algorithm which uses bitwise XOR operations extensively. This encryption algorithm uses a sequence of non-negative integers as its key. To implement this algorithm efficiently, Xorq needs to find maximum value of for given integers , and , such that, . Help Xorq implement this function. For example, , , and . We test each for all values of between and inclusive: Function Description Complete the xorKey function in the editor below. It should return an integer array where each value is the response to a query. xorKey has the following parameters: x: a list of integers queries: a two dimensional array where each element is an integer array that consists of for the query at indices and respectively. Input Format The first line contains an integer , the number of test cases. The first line of each test case contains two space-separated integers and , the size of the integer array and the number of queries against the test case. The next line contains space-separated integers . Each of next lines describes a query which consists of three integers and . Output Format For each query, print the maximum value for , such that, on a new line.
Solution :
Solution in C :
In C :
#define NDEBUG
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
struct header {
int* head;
int count;
};
int find(const int* base, int count, int p, int q)
{
int left = 0;
int right = count;
int mid;
int r;
while (left < right) {
mid = (left + right) / 2;
r = base[mid];
if (r > q) {
right = mid; // else r <= q
} else if (r < p) {
left = mid + 1; // else p <= r <= q
} else {
return r;
}
}
return -1;
}
int main(void)
{
int T, t;
int N, n;
int Q, r;
int a, p, q;
struct header* info;
int* table;
int i, j;
int ret;
int bit;
int next_bit;
int low;
int hlow;
int parent;
int child_low;
int child_high;
int low_ind;
int high_ind;
info = (struct header*)malloc(sizeof(struct header) * 65535);
assert(info != NULL);
table = (int*)malloc(sizeof(int) * 1600000);
assert(table != NULL);
ret = scanf("%d", &T);
assert(ret == 1);
assert(1 <= T && T <= 6);
for (t = 0; t < T; ++t) {
ret = scanf("%d%d", &N, &Q);
assert(ret == 2);
assert(1 <= N && N <= 100000);
assert(1 <= Q && Q <= 50000);
info[0].head = table;
info[0].count = N;
low = 0;
for (n = 0; n < N; ++n) {
ret = scanf("%d", table + n);
assert(ret == 1);
assert(0 <= table[n] && table[n] < 0x8000);
if ((table[n] & 0x4000) == 0)
++low;
}
info[1].count = low;
info[2].count = N - low;
// first iteration
bit = 0x4000;
next_bit = bit >> 1;
info[1].head = table + N;
info[2].head = info[1].head + low;
low = 0;
hlow = 0;
low_ind = 0;
high_ind = 0;
for (i = 0; i < N; ++i) {
if ((table[i] & bit) == 0) {
info[1].head[low_ind++] = i;
if ((table[i] & next_bit) == 0)
++low;
} else {
info[2].head[high_ind++] = i;
if ((table[i] & next_bit) == 0)
++hlow;
}
}
assert(low_ind == info[1].count);
assert(high_ind == info[2].count);
info[3].count = low;
info[4].count = low_ind - low;
info[5].count = hlow;
info[6].count = high_ind - hlow;
parent = 0;
for (bit = next_bit; bit > 0; bit = next_bit) {
next_bit = bit >> 1;
for (i = 0; i < 0x4000; i += bit) {
++parent;
child_low = parent + parent + 1;
child_high = child_low + 1;
info[child_low].head = info[child_low - 1].head + info[child_low - 1].count;
info[child_high].head = info[child_low].head + info[child_low].count;
low = 0;
hlow = 0;
low_ind = 0;
high_ind = 0;
for (j = 0; j < info[parent].count; ++j) {
if ((table[info[parent].head[j]] & bit) == 0) {
info[child_low].head[low_ind++] = info[parent].head[j];
if ((table[info[parent].head[j]] & next_bit) == 0)
++low;
} else {
info[child_high].head[high_ind++] = info[parent].head[j];
if ((table[info[parent].head[j]] & next_bit) == 0)
++hlow;
}
}
assert(low_ind == info[child_low].count);
assert(high_ind == info[child_high].count);
if (next_bit > 0) {
j = child_low + child_low + 1;
info[j++].count = low;
info[j++].count = low_ind - low;
info[j++].count = hlow;
info[j++].count = high_ind - hlow;
}
}
}
for (r = 0; r < Q; ++r) {
ret = scanf("%d%d%d", &a, &p, &q);
assert(ret == 3);
assert(0 <= a && a < 0x8000);
assert(1 <= p && p <= q && q <= N);
--p;
--q;
i = 0;
for (bit = 0x4000; bit > 0; bit >>= 1) {
if ((a & bit) == 0) {
i = i + i + 2;
if (find(info[i].head, info[i].count, p, q) < 0)
--i;
} else {
i = i + i + 1;
if (find(info[i].head, info[i].count, p, q) < 0)
++i;
}
assert(find(info[i].head, info[i].count, p, q) >= 0);
}
j = find(info[i].head, info[i].count, p, q);
assert(j >= 0);
printf("%d\n", a ^ table[j]);
}
}
free(table);
free(info);
return 0;
}
Solution in C++ :
In C ++ :
#include <iostream>
#include <cstdio>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
#include <ctime>
using namespace std;
const int MB = 14;
const int N = 100000;
int arr[N], t, n, q, a, b, c;
int sorted_arrs[N * (MB + 2)];
struct XorqNode {
int child[2], idx, len;
} nodes[512 + N * (MB - 6)]; //
int arr_cnt, node_cnt;
int split(int idx, int len, int bm, int r) {
int cnt = 0;
for(int i = 0; i < len; i ++) {
if((bm & arr[sorted_arrs[i + idx]]) == r) {
sorted_arrs[arr_cnt++] = sorted_arrs[i + idx];
cnt ++;
}
}
return cnt;
}
void build(int root, int idx, int len, int bit = MB) {
nodes[root].idx = idx;
nodes[root].len = len;
if(bit == -1) return;
int bm = (1 << bit);
int sidx1 = arr_cnt;
int left_cnt = split(idx, len, bm, 0);
int sidx2 = arr_cnt;
int right_cnt = split(idx, len, bm, bm);
assert(left_cnt + right_cnt == len);
if(left_cnt) {
nodes[root].child[0] = node_cnt;
build(node_cnt ++, sidx1, left_cnt, bit - 1);
} else {
nodes[root].child[0] = -1;
}
if(right_cnt) {
nodes[root].child[1] = node_cnt;
build(node_cnt ++, sidx2, right_cnt, bit - 1);
} else {
nodes[root].child[1] = -1;
}
}
bool search(int root, int from, int to) {
int left = nodes[root].idx;
int right = left + nodes[root].len - 1;
int r = N;
while(left <= right) {
int mid = (left + right) / 2;
int val = sorted_arrs[mid];
if(val >= from) {
r = val;
right = mid - 1;
} else {
left = mid + 1;
}
}
return r <= to;
}
int query(int root, int n, int from, int to, int bit = MB) {
if(bit == -1) return 0;
int mybit = ((1 << bit) & n) ? 1 : 0;
if(nodes[root].child[1 - mybit] != -1 && search(nodes[root].child[1 - mybit], from, to)) {
return query(nodes[root].child[1 - mybit], n, from, to, bit - 1) + (1 << bit);
} else {
return query(nodes[root].child[mybit], n, from, to, bit - 1);
}
}
int query2(int n, int from, int to) {
int r = 0;
for(int i = from; i <= to; i ++) {
r = max(r, arr[i] ^ n);
}
return r;
}
int main() {
int cl = clock();
int err_cnt = 0;
for(scanf("%d", &t); t--; ) {
arr_cnt = node_cnt = 0;
scanf("%d %d", &n, &q);
for(int i = 0; i < n; i ++) {
scanf("%d", &arr[i]);
}
for(int i = 0; i < n; i ++) {
sorted_arrs[arr_cnt++] = i;
}
node_cnt = 1;
build(0, 0, n);
for(int i = 0; i < q; i ++) {
scanf("%d %d %d", &a, &b, &c);
int r1 = query(0, a, b - 1, c - 1);
cout << r1 << endl;
}
}
//cerr << (clock() - cl) * 0.001 << endl;
return 0;
}
Solution in Java :
In Java :
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Solution {
private void solution() throws IOException {
int ts = in.nextInt();
while (ts-- > 0) {
int n = in.nextInt();
int q = in.nextInt();
int[] a = in.nextInts(n);
int size = 2 * Integer.highestOneBit(n);
int[][] sums = new int[size * 2][];
for (int i = 0; i < size; ++i) {
if (i < n) {
sums[i + size] = new int[] { a[i] };
} else {
sums[i + size] = new int[] {};
}
}
for (int i = size - 1; i > 0; --i) {
sums[i] = merge(sums[2 * i], sums[2 * i + 1]);
}
while (q-- > 0) {
int xor = in.nextInt();
int left = in.nextInt() - 1;
int right = in.nextInt() - 1;
int res = 0;
left += size;
right += size;
while (left <= right) {
if ((left & 1) != 0) {
res = Math.max(res, solve(sums[left++], xor));
}
if ((right & 1) == 0) {
res = Math.max(res, solve(sums[right--], xor));
}
left >>= 1;
right >>= 1;
}
out.println(res);
}
}
}
private int solve(int[] a, int xor) {
int left = 0;
int right = a.length - 1;
for (int bit = 14; bit >= 0; --bit) {
int middle = findMiddle(a, left, right, bit);
if (middle == left || middle > right) {
continue;
}
if (!get(xor, bit)) {
left = middle;
} else {
right = middle - 1;
}
}
if (a[left] != a[right]) {
throw null;
}
return a[left] ^ xor;
}
private int findMiddle(int[] a, int left, int right, int bit) {
while (left <= right) {
int middle = (left + right) >> 1;
if (!get(a[middle], bit)) {
left = middle + 1;
} else {
right = middle - 1;
}
}
return left;
}
private boolean get(int set, int bit) {
return (((set >> bit) & 1) != 0);
}
private int[] merge(int[] a, int[] b) {
int[] res = new int[a.length + b.length];
int i = 0;
int j = 0;
while (i < a.length && j < b.length) {
if (a[i] < b[j]) {
res[i + j] = a[i];
++i;
} else {
res[i + j] = b[j];
++j;
}
}
while (i < a.length) {
res[i + j] = a[i];
++i;
}
while (j < b.length) {
res[i + j] = b[j];
++j;
}
return res;
}
public void run() {
try {
solution();
in.reader.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
System.exit(1);
}
}
private void debug(Object... objects) {
System.out.println(Arrays.toString(objects));
}
private static class Scanner {
private BufferedReader reader;
private StringTokenizer tokenizer;
public Scanner(Reader reader) {
this.reader = new BufferedReader(reader);
this.tokenizer = new StringTokenizer("");
}
public boolean hasNext() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = reader.readLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
public String next() throws IOException {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
tokenizer = new StringTokenizer("");
return reader.readLine();
}
public int[] nextInts(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; ++i) {
res[i] = nextInt();
}
return res;
}
public long[] nextLongs(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; ++i) {
res[i] = nextLong();
}
return res;
}
public double[] nextDoubles(int n) throws IOException {
double[] res = new double[n];
for (int i = 0; i < n; ++i) {
res[i] = nextDouble();
}
return res;
}
public String[] nextStrings(int n) throws IOException {
String[] res = new String[n];
for (int i = 0; i < n; ++i) {
res[i] = next();
}
return res;
}
}
public static void main(String[] args) throws Exception {
new Solution().run();
}
private Scanner in = new Scanner(new InputStreamReader(System.in));
private PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
}
Solution in Python :
In Python3 :
from sys import stderr
MAXBITS = 15
def main():
ncases = int(input())
for case in range(ncases):
arrsize, nqueries = readints()
arr = readints()
assert arrsize == len(arr)
finder = XORkeyfinder(arr)
for query in range(nqueries):
a, start, stop = readints()
print(finder.findmax(a, start-1, stop))
def readints():
return [int(f) for f in input().split()]
class XORkeyfinder:
def __init__(self, arr):
self.tbl = []
self.arr = arr
for i in range(MAXBITS):
shift = MAXBITS -i - 1
prev = [None] * (2 << i)
row = [len(arr)] * len(arr)
chain = [None] * len(arr)
for loc, x in enumerate(arr):
x = x >> shift
p = prev[x ^ 1]
while p is not None:
row[p] = loc
p = chain[p]
# chain[p] = None
prev[x ^ 1] = None
chain[loc] = prev[x]
prev[x] = loc
self.tbl.append(row)
# print(' '.join('%2d' % i for i in row), file=stderr)
def findmax(self, a, start, stop, MAXBITS=MAXBITS):
arr, tbl = self.arr, self.tbl
comp = ~a
best, bestloc = arr[start], start
for i, row in enumerate(tbl):
test = 1 << (MAXBITS - i - 1)
if comp & test != best & test:
newloc = row[bestloc]
if newloc < stop:
best, bestloc = arr[newloc], newloc
return best ^ a
main()
View More Similar Problems
Queries with Fixed Length
Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon
View Solution →QHEAP1
This question is designed to help you get a better understanding of basic heap operations. You will be given queries of types: " 1 v " - Add an element to the heap. " 2 v " - Delete the element from the heap. "3" - Print the minimum of all the elements in the heap. NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct element
View Solution →Jesse and Cookies
Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with: sweetness Least sweet cookie 2nd least sweet cookie). He repeats this procedure until all the cookies in his collection have a sweetness > = K. You are given Jesse's cookies. Print t
View Solution →Find the Running Median
The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median.
View Solution →Minimum Average Waiting Time
Tieu owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Tieu simply minimizes the average waiting time of his customers. So he gets to decide who is served first, regardless of how sooner or later a person comes. Different kinds of pizzas take different amounts of time to cook. Also, once h
View Solution →Merging Communities
People connect with each other in a social network. A connection between Person I and Person J is represented as . When two persons belonging to different communities connect, the net effect is the merger of both communities which I and J belongs to. At the beginning, there are N people representing N communities. Suppose person 1 and 2 connected and later 2 and 3 connected, then ,1 , 2 and 3 w
View Solution →