Words Score Python
Problem Statement :
In this challenge, the task is to debug the existing code to successfully execute all provided test files. Consider that vowels in the alphabet are a, e, i, o, u and y. Function score_words takes a list of lowercase words as an argument and returns a score as follows: The score of a single word is 2 if the word contains an even number of vowels. Otherwise, the score of this word is . The score for the whole list of words is the sum of scores of all words in the list. Debug the given function score_words such that it returns a correct score. Your function will be tested on several cases by the locked template code. Input Format The input is read by the provided locked code template. In the first line, there is a single integer denoting the number of words. In the second line, there are n space-separated lowercase words. Constraints 1 <= n <= 20 Each word has at most 20 letters and all letters are English lowercase letters Output Format The output is produced by the provided and locked code template. It calls function score_words with the list of words read from the input as the argument and prints the returned score to the output.
Solution :
Solution in C :
def is_vowel(letter):
return letter in ['a', 'e', 'i', 'o', 'u', 'y']
def score_words(words):
score = 0
for word in words:
num_vowels = 0
for letter in word:
if is_vowel(letter):
num_vowels += 1
if num_vowels % 2 == 0:
score += 2
else:
score += 1
return score
View More Similar Problems
Inserting a Node Into a Sorted Doubly Linked List
Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function
View Solution →Reverse a doubly linked list
This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.
View Solution →Tree: Preorder Traversal
Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's
View Solution →Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →