Walking the Approximate Longest Path
Problem Statement :
Jenna is playing a computer game involving a large map with n cities numbered sequentially from 1 to n that are connected by m bidirectional roads. The game's objective is to travel to as many cities as possible without visiting any city more than once. The more cities the player visits, the more points they earn. As Jenna's fellow student at Hackerland University, she asks you for help choosing an optimal path. Given the map, can you help her find a path that maximizes her score? Note: She can start and end her path at any two distinct cities. Input Format The first line contains two space-separated integers describing the respective values of n (the number of cities) and m (the number of roads). Each line i of the m subsequent lines contains two space-separated integers, xi and yi, describing a bidirectional road between cities xi and yi. Constraints 1 <= n <= 10^4' 1 <= m <= 10^5 1 <= xi, yi <= n Output Format Print the following two lines of output: The first line must contain a single integer, d, denoting the length of the path. The second line must contain d distinct space-separated integers describing Jenna's path in the same order in which she visited each city
Solution :
Solution in C :
In C++ :
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <cstring>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define SIZE(x) (int((x).size()))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define repd(i,r,l) for (int i=(r); i>=(l); i--)
#define rept(i,c) for (typeof((c).begin()) i=(c).begin(); i!=(c).end(); i++)
#ifndef ONLINE_JUDGE
#define debug(x) { cerr<<#x<<" = "<<(x)<<endl; }
#else
#define debug(x) {}
#endif
#define maxn 10010
vector<int> e[maxn];
int vis[maxn], seq[2*maxn], ans[2*maxn];
void lemon()
{
int n,m; scanf("%d%d",&n,&m);
rep(i,1,m)
{
int x,y; scanf("%d%d",&x,&y);
e[x].push_back(y); e[y].push_back(x);
}
int maxv=0;
rep(iter,1,10)
{
memset(vis,0,sizeof vis);
seq[1+maxn]=rand()%n+1; vis[seq[1+maxn]]=1;
int beg = 1, all=1, last=seq[1+maxn], noprogress=0;
while (noprogress<200)
{
int k=rand()%e[last].size();
k=e[last][k];
if (!vis[k])
{
vis[k]=1; all++; seq[all+maxn]=k; last=k;
noprogress=0;
}
else
{
int where;
rep(i,beg,all) if (seq[i+maxn]==k) { where=i; break; }
reverse(seq+where+maxn+1,seq+all+maxn+1);
last=seq[all+maxn];
noprogress++;
}
}
last=seq[1+maxn], noprogress=0;
while (noprogress<200 && all-beg+1<n)
{
int k=rand()%e[last].size();
k=e[last][k];
if (!vis[k])
{
vis[k]=1; beg--; seq[beg+maxn]=k; last=k;
noprogress=0;
}
else
{
int where;
rep(i,beg,all) if (seq[i+maxn]==k) { where=i; break; }
reverse(seq+beg+maxn,seq+where+maxn);
last=seq[beg+maxn];
noprogress++;
}
}
if (all-beg+1>maxv)
{
maxv=all-beg+1; int c=0;
rep(i,beg,all)
{
c++; ans[c]=seq[i+maxn];
}
}
}
printf("%d\n",maxv);
rep(i,1,maxv) printf("%d ",ans[i]); printf("\n");
}
int main()
{
srand(time(0));
ios::sync_with_stdio(true);
#ifndef ONLINE_JUDGE
// freopen("5.in","r",stdin);
#endif
lemon();
return 0;
}
In Java ;
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int n1=0;
int n2=0;
ArrayList<ArrayList<Integer>> nodeConn = new ArrayList<ArrayList<Integer>>();
int[] nodeLen = new int[n];
for (int i=0; i<n; i++){
nodeConn.add(new ArrayList<Integer>());
}
for (int i=0; i<m; i++){
n1 = in.nextInt()-1;
n2 = in.nextInt()-1;
nodeConn.get(n1).add(n2);
nodeLen[n1]++;
nodeConn.get(n2).add(n1);
nodeLen[n2]++;
}
int min=0;
for (int i=0; i<n; i++){
//System.out.print((i+1) + " "+ nodeLen[i]+" ");
if(nodeLen[i]<nodeLen[min])
min=i;
//System.out.println(min+1);
}
ArrayList<Integer> temp = new ArrayList<Integer>();
int currNode = 0;
int newMin = 0;
int count = 0;
int[] path = new int[n];
while(nodeLen[min]!=0&&count<=n){
path[count]=min+1;
temp = nodeConn.get(min);
newMin=temp.get(0);
for(int i=0; i<temp.size(); i++){
currNode = temp.get(i);
nodeConn.get(currNode).remove((Integer)min);
nodeLen[currNode]--;
if(nodeLen[currNode]<nodeLen[newMin])
newMin=currNode;
}
min = newMin;
count++;
}
if(count!=n){
path[count]=min+1;
count++;
}
System.out.println(count);
for (int i=0; i<count; i++){
System.out.print(path[i] + " ");
}
}
}
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
int max=0,max1=0,index,count;
void DFS(int* V,int i,int n,int* parent,int* g[],int q)
{
//printf(" %s ",node1[i].ch);
V[i] = 1;
count++;
///node* temp;
//temp = node1[i].next;
int j;
for(int j=0;j<n;j++)
{
if(g[i][j]==1&&V[j]==-1){
parent[j] = i;
DFS(V,j,n,parent,g,q+1);
}
}
if(q>max)
{
max = q;
index = i;
}
}
// function for traversal of every non visited nodes
void con_COMP(int size,int* g[])
{
int visited[size],parent[size];
int i;
for(i=0;i<size;i++)
{
visited[i] = -1;
parent[i] = -1;
}
int index1;
for(i = 0;i<size;i++)
{
if(visited[i] == -1)
{
count = 0;
//printf("%d.",count);
DFS(visited,i,size,parent,g,1);
if(count>max1)
{
max1 = count;
index1 = i;
}
// printf("\n");
}
}
printf("%d\n",max);
for(int j = index;j!=index1;j=parent[j])
printf("%d ",j+1);
printf("%d ",index1+1);
}
int main() {
int n,m;
scanf("%d %d",&n,&m);
int** graph = (int**)malloc(sizeof(int*)*(n));
for(int i = 0;i < n;i++)
{
graph[i] = (int*)malloc(sizeof(int)*(n));
}
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
graph[i][j] = 0;
}
for(int i=0;i<m;i++)
{
int v1,v2;
scanf("%d %d",&v1,&v2);
graph[v1-1][v2-1] = 1;
graph[v2-1][v1-1] = 1;
}
con_COMP(n,graph);
return 0;
}
In Python3 :
n,m=map(int,input().split())
roads=[]
dic={}
for i in range(m):
[x,y]=list(map(int,input().split()))
roads.append([x,y])
if not x in dic:dic[x]={y}
if x in dic:dic[x].add(y)
if not y in dic:dic[y]={x}
if y in dic:dic[y].add(x)
count=[0]*(n+1)
for x in dic:
count[x]=len(dic[x])
_,start=min([[count[z],z] for z in dic],key=lambda a:a[0])
path=[start]
x=start
for i in range(1,n):
if len(dic[x])==0:break
_,y=min([[count[z],z] for z in dic[x]],key=lambda a:a[0])
if x in dic[y]: dic[y].remove(x)
count[y]-=1
path.append(y)
x=y
print(len(path))
print(*path, sep=" ")
View More Similar Problems
Reverse a doubly linked list
This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.
View Solution →Tree: Preorder Traversal
Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's
View Solution →Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →Tree : Top View
Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.
View Solution →