Tree : Top View


Problem Statement :


Given a pointer to the root of a binary tree, print the top view of the binary tree.

The tree as seen from the top the nodes, is called the top view of the tree.

For example :

   1
    \
     2
      \
       5
      /  \
     3    6
      \
       4
Top View : 1 -> 2  -> 5 -> 6

Complete the function topView  and print the resulting values on a single line separated by space.

Input Format

You are given a function,

void topView(node * root) {

}
Constraints

 1 <= Nodes in the tree   <= 500

Output Format

Print the values on a single line separated by space.



Solution :



title-img


                            Solution in C :

In C++ :


/*
struct node
{
    int data;
    node* left;
    node* right;
};

*/

int w_min=-1,w_max=1,w=0;
void inorder(node *root,int w)
    { 
    if(root==NULL) return;
    if(w<w_min) w_min=w;
    if(w>w_max) w_max=w;
    if(root->left!=NULL) inorder(root->left,w-1);
    if(root->right!=NULL) inorder(root->right,w+1);
}
void top(node *root,int arr[],int w,int h,int arr2[])
    {
    if(root==NULL) return;
    if(arr[w-w_min]==0 || h<arr2[w-w_min])
        {
        arr2[w-w_min]=h;
       arr[w-w_min]=root->data;     
        }
    if(root->left!=NULL) top(root->left,arr,w-1,h+1,arr2);
    if(root->right!=NULL) top(root->right,arr,w+1,h+1,arr2);
}
void top_view(node * root)
{   
 inorder(root,0);
    int arr[w_max-w_min+1],arr1[w_max-w_min+1];
    for(int i=0;i<w_max-w_min+1;i++)
        {
        arr[i]=0;
        arr1[i]=90;
    }
  top(root,arr,0,1,arr1);
  for(int i=0;i<w_max-w_min+1;i++)
        {
      cout<<arr[i]<<" ";
    }  
}





In Java :



/*
   class Node 
       int data;
       Node left;
       Node right;
*/
void top_view(Node root)
{
    if(root==null)
        return;
    Stack st=new Stack();
     int size=0;
    int arr[]=new int[100];
   
    Node Left=null,Right=null;
    Left=root.left;
    Right=root.right;
     
        while(Right!=null)
        {
           
             arr[size]=Right.data;
                  
            size++;
            Right=Right.right;
            if(Right==null)
                {
                    for(int i=size-1;i>=0;i--)
                        {
                        st.push(arr[i]);
                       
                    }
                        
            }
           
    }
    
    st.push(root.data);
    while(Left!=null)
        {
             
        st.push(Left.data);
         
        Left=Left.left;
       
    }
    while(st.isEmpty()!=true)
        {
        System.out.print(st.pop()+" ");
    }
  
        
}




In pytho3 :



"""
Node is defined as
self.left (the left child of the node)
self.right (the right child of the node)
self.info (the value of the node)
"""
from collections import defaultdict


def topView(root):
    # Write your code here
    if root is None:
        return None
    queue = [(root, 0)]
    hashtable = defaultdict(list)
    for node, level in queue:
        if node is not None:
            hashtable[level].append(node.info)
        if node.left is not None:
            queue.extend([(node.left, level - 1)])
        if node.right is not None:
            queue.extend([(node.right, level + 1)])
    if hashtable:
        for level in range(min(hashtable.keys()),
                           max(hashtable.keys()) + 1):
            print(hashtable[level][0], end=' ')
    else:
        return None


In C :


/*
struct node
{
    int data;
    node* left;
    node* right;
};

*/

struct node2
{
    struct node2* next;
    struct node2* prev;
    struct node* data;
    int idx;
};

typedef struct{
    int size;
    struct node2* front;
    struct node2* rear;
}queue;

struct node2* CreateNode(struct node * data, int idx)
{
    struct node2* n;
    // n = (struct node2*)malloc(sizeof(struct node2));
    // n->data = (struct node*)malloc(sizeof(struct node));
    // n->next = NULL;
    // n->prev = NULL;
    // n->idx = idx;
    struct node2* node2 = (struct node2*)malloc(sizeof(struct node2));

        node2->idx = idx;

        node2->prev = NULL;
        node2->next = NULL;
    node2->data = data;
    return node2;
}


queue CreateQueue()
{
    queue q;
    q.size = 0;
    q.front = NULL;
    q.rear = NULL;
    return q;
}

void
Enqueue(queue *q, struct node * data, int idx)
{
    struct node2* n = CreateNode(data, idx);
    if(q->front == NULL)
        q->front = q->rear = n;
    else
    {
        q->rear->next = n;
        q->rear = n;
    }
    q->size++;
}

struct node2*
Dequeue(queue *q)
{
    if(q->size <= 0)
        return NULL; 
    struct node2* del = q->front;
    q->front = q->front->next;
    q->size--;
    return del;
}

int
IsQueueEmpty(queue *q)
{
    return q == NULL || q->size == 0;
}

void topView(struct node * root) {
    int *a, i, arr_size, idx;
    arr_size = 1001;
    idx = 500;
    struct node2 *curr;
    a = (int*)calloc(arr_size, sizeof(int));
    for (i = 0; i < arr_size; i ++) {
        a[i] = -1;
    }
    queue que = CreateQueue();
    Enqueue(&que, root, idx);
    while (!IsQueueEmpty(&que)) {
        curr = Dequeue(&que);

        if (a[curr->idx] == -1) {
            a[curr->idx] = (int)curr->data->data;
        }
        if (curr->data->left != NULL) {
            Enqueue(&que, curr->data->left, curr->idx -1);
        }
        if (curr->data->right != NULL) {
            Enqueue(&que, curr->data->right, curr->idx +1);
        }
    }

    for (i = 0; i < 1001; i++) {
        if (a[i] != -1){
            printf("%d ", a[i]);
        }
    }
    // if (root == NULL) {
    //     return;
    // }
    // if (a[idx] == -1) {
    //     a[idx] = root->data;
    // }
    // traverse(root->left; a; idx - 1);
    // traverse(root->right; a; idx + 1);
    
  
}
                        








View More Similar Problems

Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

View Solution →

Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

View Solution →

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

View Solution →

Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

View Solution →