Virtual Boolean Array - Google Top Interview Questions
Problem Statement :
Implement a boolean array which implements the following methods: BooleanArray() which initializes an array of size 2 ** 31 with all false values. void setTrue(int i) which sets the value at index i to true. void setFalse(int i) which sets the value at index i to false. void setAllTrue() which sets the value at every index to true. void setAllFalse() which sets the value at every index to false. boolean getValue(int i) which returns the value at index i. Constraints 0 ≤ n ≤ 100,000 where n is the number of method calls Example 1 Input methods = ["constructor", "getValue", "setAllTrue", "getValue", "setFalse", "getValue"] arguments = [[], [9], [], [3], [4], [4]]` Output [None, False, None, True, None, False] Explanation a = BooleanArray() a.getValue(9) == False a.setAllTrue() a.getValue(3) == True a.setFalse(4) a.getValue(4) == False Example 2 Input methods = ["constructor", "setTrue", "getValue", "setFalse", "getValue"] arguments = [[], [5], [5], [5], [5]]` Output [None, None, True, None, False] Explanation a = BooleanArray() a.setTrue(5) a.getValue(5) == True a.setFalse(5) a.getValue(5) == False
Solution :
Solution in C++ :
class BooleanArray {
public:
bool base = false;
set<int> diffs;
BooleanArray() {
base = false;
diffs.clear();
}
void setTrue(int i) {
if (base == false)
diffs.insert(i);
else
diffs.erase(i);
}
void setFalse(int i) {
if (base == true)
diffs.insert(i);
else
diffs.erase(i);
}
void setAllTrue() {
base = true;
diffs.clear();
}
void setAllFalse() {
base = false;
diffs.clear();
}
bool getValue(int i) {
return (base == true ? (diffs.count(i) > 0 ? false : true)
: (diffs.count(i) > 0 ? true : false));
}
};
Solution in Java :
import java.util.*;
class BooleanArray {
public Map<Integer, Boolean> map;
public boolean allTrue;
public BooleanArray() {
map = new HashMap<>();
}
public void setTrue(int i) {
map.put(i, true);
}
public void setFalse(int i) {
map.put(i, false);
}
public void setAllTrue() {
map.clear();
allTrue = true;
}
public void setAllFalse() {
map.clear();
allTrue = false;
}
public boolean getValue(int i) {
if (map.containsKey(i))
return map.get(i);
return allTrue;
}
}
Solution in Python :
class BooleanArray:
def __init__(self):
self.arr = {}
self.default = False
def setTrue(self, i):
self.arr[i] = True
def setFalse(self, i):
self.arr[i] = False
def setAllTrue(self):
self.arr = {}
self.default = True
def setAllFalse(self):
self.arr = {}
self.default = False
def getValue(self, i):
if i not in self.arr:
return self.default
return self.arr[i]
immortal
96
1 year ago
Even more compact memory footprint depending upon assignment.
class BooleanArray:
def __init__(self):
self.state = False
self.d = set()
def clear(self):
self.d = set()
def setTrue(self, i):
if not self.state:
self.d.add(i)
elif i in self.d:
self.d.remove(i)
def setFalse(self, i):
if self.state:
self.d.add(i)
elif i in self.d:
self.d.remove(i)
def setAllTrue(self):
self.clear()
self.state = True
def setAllFalse(self):
self.clear()
self.state = False
def getValue(self, i):
if i in self.d:
return not self.state
return self.state
View More Similar Problems
Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →Self Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution →Array and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution →Median Updates
The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o
View Solution →