Sudoku Solver - Amazon Top Interview Questions


Problem Statement :


Sudoku is a puzzle where you're given a partially-filled 9 by 9 grid with digits. The objective is to fill the grid with the constraint that every row, column, and box (3 by 3 subgrid) must contain all of the digits from 1 to 9.

Implement an efficient sudoku solver that takes in an incomplete board and solves it. In the given board, the incomplete spaces will be 0.

Constraints

n = 9 where n is the number of rows and columns in matrix

Example 1

Input

matrix = [
    [0, 2, 0, 5, 0, 1, 0, 9, 0],
    [8, 0, 0, 2, 0, 3, 0, 0, 6],
    [0, 3, 0, 0, 6, 0, 0, 7, 0],
    [0, 0, 1, 0, 0, 0, 6, 0, 0],
    [5, 4, 0, 0, 0, 0, 0, 1, 9],
    [0, 0, 2, 0, 0, 0, 7, 0, 0],
    [0, 9, 0, 0, 3, 0, 0, 8, 0],
    [2, 0, 0, 8, 0, 4, 0, 0, 7],
    [0, 1, 0, 9, 0, 7, 0, 6, 0]
]

Output

[
    [4, 2, 6, 5, 7, 1, 3, 9, 8],
    [8, 5, 7, 2, 9, 3, 1, 4, 6],
    [1, 3, 9, 4, 6, 8, 2, 7, 5],
    [9, 7, 1, 3, 8, 5, 6, 2, 4],
    [5, 4, 3, 7, 2, 6, 8, 1, 9],
    [6, 8, 2, 1, 4, 9, 7, 5, 3],
    [7, 9, 4, 6, 3, 2, 5, 8, 1],
    [2, 6, 5, 8, 1, 4, 9, 3, 7],
    [3, 1, 8, 9, 5, 7, 4, 6, 2]
]



Solution :



title-img




                        Solution in C++ :

bool isValid(vector<vector<int>>& matrix, int x, int y, int val) {
    for (int j = 0; j < 9; j++) {
        if (matrix[x][j] == val) return false;
    }

    for (int i = 0; i < 9; i++) {
        if (matrix[i][y] == val) return false;
    }

    int smi = x / 3 * 3;
    int smj = y / 3 * 3;

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            if (matrix[smi + i][smj + j] == val) return false;
        }
    }

    return true;
}

bool solveSudoku(vector<vector<int>>& matrix, int i, int j) {
    if (i == 9) {
        return true;
    }

    int ni = 0, nj = 0;
    if (j == 8) {
        ni = i + 1;
        nj = 0;
    } else {
        ni = i;
        nj = j + 1;
    }

    if (matrix[i][j] != 0) {
        if (solveSudoku(matrix, ni, nj)) return true;
    } else {
        for (int po = 1; po <= 9; po++) {
            if (isValid(matrix, i, j, po)) {
                matrix[i][j] = po;
                if (solveSudoku(matrix, ni, nj)) return true;
                matrix[i][j] = 0;
            }
        }
    }

    return false;
}

vector<vector<int>> solve(vector<vector<int>>& matrix) {
    solveSudoku(matrix, 0, 0);
    return matrix;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    public int[][] solve(int[][] matrix) {
        if (matrix == null || matrix.length == 0) {
            return matrix;
        }
        helper(matrix);
        return matrix;
    }
    public boolean helper(int[][] matrix) {
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 0) {
                    for (int num = 1; num < 10; num++) {
                        if (isvalid(matrix, i, j, num)) {
                            matrix[i][j] = num;
                            if (helper(matrix))
                                return true;
                            else
                                matrix[i][j] = 0;
                        }
                    }
                    return false;
                }
            }
        }
        return true;
    }
    public boolean isvalid(int[][] matrix, int i, int j, int num) {
        // check column
        for (int row = 0; row < 9; row++) {
            if (matrix[row][j] == num)
                return false;
        }
        // check column
        for (int col = 0; col < 9; col++) {
            if (matrix[i][col] == num)
                return false;
        }
        // check borad
        for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)
            for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)
                if (matrix[row][col] == num)
                    return false;

        return true;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, matrix):
        if not matrix or not matrix[0]:
            return

        self.solve_board(matrix)

        return matrix

    def solve_board(self, matrix) -> bool:
        for i in range(9):
            for j in range(9):
                if matrix[i][j] == 0:
                    # for every possible number value, try and see if it works
                    for k in range(1, 10):
                        if self.is_valid(matrix, i, j, k):
                            matrix[i][j] = k

                            if self.solve_board(matrix):
                                return True
                            else:
                                matrix[i][j] = 0

                    # we went through every number and nothing worked
                    return False

        return True

    def is_valid(self, matrix, row, col, value):
        box_row = (row // 3) * 3
        box_col = (col // 3) * 3

        # check row
        for i in range(9):
            if matrix[i][col] == value:
                return False

        # check col
        for i in range(9):
            if matrix[row][i] == value:
                return False

        # check box subgrid
        for i in range(9):
            resolved_row = box_row + (i % 3)
            resolved_col = box_col + (i // 3)

            if matrix[resolved_row][resolved_col] == value:
                return False

        return True
                    


View More Similar Problems

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →