Stone Division, Revisited


Problem Statement :


You have a pile of  stones that you want to split into multiple piles, as well as a set, , of  distinct integers. We define a move as follows:

First, choose a pile of stones. Let's say that the chosen pile contains  stones.
Next, look for some  such that  and  is divisible by  (i.e.,  is a factor of ); if such an  exists, you can split the pile into  equal smaller piles.
You are given  queries where each query consists of  and . For each query, calculate the maximum possible number of moves you can perform and print it on a new line


Input Format

The first line contains an integer, , denoting the number of queries. The  subsequent lines describe each query in the following format:

The first line contains two space-separated integers describing the respective values of  (the size of the initial pile in the query) and  (the size of the set in the query).
The second line contains  distinct space-separated integers describing the values in set .


Output Format

For each query, calculate the maximum possible number of moves you can perform and print it on a new line.



Solution :



title-img




                        Solution in C++ :

In  C++  :








#include <bits/stdc++.h>
#include<assert.h>
#define pf printf
#define sf scanf
#define vlong lobg long
using namespace std;

map<vlong, vlong>dp;
map<vlong, bool>done;
vlong arr[1003], n;
int m;

vlong rec(vlong pile)
{
   if(done[pile] == 1)
   {
      return dp[pile];
   }

   vlong ans = 0;
   for(int i=0; i<m; i++)
   {
      if(pile%arr[i] == 0 && (pile/arr[i])>1)
      {
         //ans = max(ans, (1LL + ( ( ( (pile/arr[i]) % mod) * rec(arr[i]) ) % mod ) % mod) );
         ans = max(ans, 1LL + ( (pile/arr[i]) * rec(arr[i]) ) );
      }
   }

   done[pile] = 1;
   return dp[pile] = ans;
}
void solution() {

    int q;
    sf("%d", &q);
    for(int k=0; k<q; k++){

        //dp.clear();
        done.clear();

   sf("%lld %d", &n, &m);
   for(int i=0; i<m; i++)
    sf("%lld", &arr[i]);

   vlong ans = rec(n);

   cout<<ans<<endl;
    }
}


int main () {

        //freopen("input.txt", "r", stdin);
        solution();


    return 0;
}
                    






View More Similar Problems

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →