Java Stdin and Stdout II
Problem Statement :
In this challenge, you must read an integer, a double, and a String from stdin, then print the values according to the instructions in the Output Format section below. To make the problem a little easier, a portion of the code is provided for you in the editor. Note: We recommend completing Java Stdin and Stdout I before attempting this challenge. Input Format There are three lines of input: The first line contains an integer. The second line contains a double. The third line contains a String. Output Format There are three lines of output: On the first line, print String: followed by the unaltered String read from stdin. On the second line, print Double: followed by the unaltered double read from stdin. On the third line, print Int: followed by the unaltered integer read from stdin. To make the problem easier, a portion of the code is already provided in the editor. Note: If you use the nextLine() method immediately following the nextInt() method, recall that nextInt() reads integer tokens; because of this, the last newline character for that line of integer input is still queued in the input buffer and the next nextLine() will be reading the remainder of the integer line (which is empty). Sample Input 42 3.1415 Welcome to HackerRank's Java tutorials! Sample Output String: Welcome to HackerRank's Java tutorials! Double: 3.1415 Int: 42
Solution :
Solution in C :
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int x=sc.nextInt();
double y=sc.nextDouble();
sc.nextLine();
String s=sc.nextLine();
System.out.println("String: "+s);
System.out.println("Double: "+y);
System.out.println("Int: "+x);
}
}
View More Similar Problems
Find Merge Point of Two Lists
This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share
View Solution →Inserting a Node Into a Sorted Doubly Linked List
Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function
View Solution →Reverse a doubly linked list
This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.
View Solution →Tree: Preorder Traversal
Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's
View Solution →Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →