Similar Pair


Problem Statement :


A pair of nodes, , is a similar pair if the following conditions are true:

node  is the ancestor of node 
Given a tree where each node is labeled from  to , find the number of similar pairs in the tree.


Function Description

Complete the similarPair function in the editor below. It should return an integer that represents the number of pairs meeting the criteria.

similarPair has the following parameter(s):

n: an integer that represents the number of nodes
k: an integer
edges: a two dimensional array where each element consists of two integers that represent connected node numbers
Input Format

The first line contains two space-separated integers  and , the number of nodes and the similarity threshold.
Each of the next  lines contains two space-separated integers defining an edge connecting nodes  and , where node  is the parent to node .



Solution :



title-img


                            Solution in C :

In  C :







#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "math.h"

typedef struct Node
{
	struct Node *parent;
	struct Node *peer_next;
	struct Node *child_list;
	int     val;
	struct Node *hash_next;
}Node;

unsigned long long int count;
unsigned int n,T,size;
Node **hash;
Node *root=NULL;

unsigned int diff(int a, int b)
{
	if(a>b) return (a-b);
	else    return (b-a);
}

void countup(Node *x)
{
    int i,val;
    if(!x || !x->parent) return;
    if((n-T) < size)
    {
        count+=size;
        for(i=0;i<(((x->val-1)>T)?(x->val-1-T):0); i++)
            if(hash[i]) count--;
        for(i=(((x->val+T)>n)?n:(x->val+T));i<n; i++)
            if(hash[i]) count--;
    }
    else if(T > size)
    {
        val=x->val;
        x=x->parent;
        while(x)
        {
            if(diff(val,x->val) <= T) count++;
            x=x->parent;
        }
    }
    else
    {
        for(i=((x->val-1)>T)?(x->val-1-T):0; i<(((x->val+T)>n)?n:(x->val+T)); i++)
        {
            if(hash[i])
            {
                //printf("%2d, 0x%x\n",i,hash[i]);
                count++;
            }
        }
    }
}

void solve()
{
    Node *tmp=root;
    Node *tmp1;
    int i;
    for(i=0;i<n;i++) hash[i]=NULL;
    size=0;
    while(tmp)
    {
        while(tmp->child_list)
        {
            hash[(tmp->val-1)%n]=tmp;
            size++;
            tmp=tmp->child_list;
        }

        countup(tmp);
        tmp1=tmp;
        tmp=tmp->parent;
        if(tmp)// && (tmp->child_list == tmp1))
        {
            hash[(tmp->val-1)%n]=NULL;
            size--;
            tmp->child_list=tmp1->peer_next;
        }
        //printf("node = %3d (count = %d)\n",tmp1->val,count);
        free(tmp1);
    }
}

Node* allocate(unsigned int val)
{
	Node *node=malloc(sizeof(Node));
    memset(node,0,sizeof(Node));
    node->val=val;
    return node;
}
Node* insert(unsigned int val)
{
    Node *tmp=hash[val%n];
    if(!tmp)
    {
        return (hash[val%n]=allocate(val));
    }
    while(tmp)
    {
        if(tmp->val==val) return tmp;
        if(!tmp->hash_next)
            break;
        tmp=tmp->hash_next;
    }
    return (tmp->hash_next=allocate(val));
}

void connect(Node *parent, Node *child)
{
    if(!parent || !child) return;
    /*if(!parent->child_list)
        parent->child_list=child;
    else
    {
        Node *peer=parent->child_list;
        while(peer->peer_next) peer=peer->peer_next;
        peer->peer_next=child;
    }*/
    child->peer_next=parent->child_list;
    parent->child_list=child;

    child->parent=parent;
}

void build(){

	int i,a,b;
	Node *parent,*child;
	for(i=0;i<n-1;i++)
	{
		scanf("%d %d",&a,&b);
        parent=insert(a);
        child=insert(b);
        //printf("%d %d\n",parent->val,child->val);
        connect(parent,child);
        /*if(!parent->parent)
            root=parent;*/
	}
	root=hash[1];
	while(root && root->parent) root=root->parent;
}

void print(Node *node, int level)
{
    int i=level;
    if(!node) return;
    while(i--) printf("  ");
    printf("%d (%d)\n",node->val,node->parent?node->parent->val:0);
    node=node->child_list;
    while(node)
    {
        print(node,level+1);
        node=node->peer_next;
    }
}

int main(){
	count=0;
	scanf("%d %d",&n,&T);
	hash=malloc(n*sizeof(Node*));
    memset(hash,0,n*sizeof(Node*));
	if (!hash) return -1;
	build();
	//print(root, 0);
	solve();
	printf("%llu\n",count);
	return 0;
}
                        


                        Solution in C++ :

In   C++  :







#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int n, aib[200005];

inline int lsb(int & x){
    return x & -x;
}

void update(int val, int pos){
    for(int i = pos; i <= n * 2; i += lsb(i))
        aib[i] += val;
}

int query(int pos){
    int rval = 0;
    for(int i = pos; i > 0; i -= lsb(i))
        rval += aib[i];
    return rval;
}

vector<int> graph[100005];
int t, dad[100005];
long long ans;

void dfs(int x){
    ans += (long long)query(x + t) - query(x - t - 1);
    update(1, x);
    for(int i = 0; i < graph[x].size(); ++i)
        dfs(graph[x][i]);
    update(-1, x);
}

int main() {
    cin >> n >> t;
    for(int i = 1; i < n; ++i){
        int x, y;
        cin >> x >> y;
        dad[y] = x;
        graph[x].push_back(y);
    }
    for(int i = 1; i <= n; ++i)
        if(!dad[i])
            dfs(i);
    cout << ans;
    return 0;
}
                    


                        Solution in Java :

In  Java  :








import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;

public class Solution implements Runnable {

    BufferedReader in;
    PrintWriter out;
    StringTokenizer tok = new StringTokenizer("");

    public static void main(String[] args) {
        new Thread(null, new Solution(), "", 256 * (1L << 20)).start();
    }

    public void run() {
        try {
            long t1 = System.currentTimeMillis();
            in = new BufferedReader(new InputStreamReader(System.in));
            out = new PrintWriter(System.out);

          //  in = new BufferedReader(new FileReader("src/input.txt"));

            Locale.setDefault(Locale.US);
            solve();
            in.close();
            out.close();
            long t2 = System.currentTimeMillis();
            System.err.println("Time = " + (t2 - t1));
        } catch (Throwable t) {
            t.printStackTrace(System.err);
            System.exit(-1);
        }
    }

    String readString() throws IOException {
        while (!tok.hasMoreTokens()) {
            tok = new StringTokenizer(in.readLine());
        }
        return tok.nextToken();
    }

    int readInt() throws IOException {
        return Integer.parseInt(readString());
    }

    long readLong() throws IOException {
        return Long.parseLong(readString());
    }

    double readDouble() throws IOException {
        return Double.parseDouble(readString());
    }
    Edge[] first;
    FenwickTree sum;
    long result;

    void solve() throws IOException {
        int n = readInt();
        int k = readInt();
        first = new Edge[n];
        boolean[] root = new boolean[n];
        Arrays.fill(root, true);
        for (int i = 0; i < n - 1; i++) {
            int from = readInt() - 1;
            int to = readInt() - 1;
            root[to] = false;
            first[from] = new Edge(from, to, first[from]);
        }
        sum = new FenwickTree(n);
        result = 0;
        for (int i = 0; i < n; i++) {
            if (root[i]) {
                dfs(i, k);
                break;
            }
        }
        out.println(result);
    }
    
    void dfs(int x, int k)
    {
        result += sum.find(x + k) - sum.find(x - k - 1);
        sum.increase(x, +1);
        for (Edge edge = first[x]; edge != null; edge = edge.next)
        {
            dfs(edge.b, k);
        }
        sum.increase(x, -1);
    }
    

    class Edge {

        int a;
        int b;
        Edge next;

        Edge(int a, int b, Edge next) {
            this.a = a;
            this.b = b;
            this.next = next;
        }
    }

    class FenwickTree {

        private int[] sum;

        FenwickTree(int size) {
            sum = new int[size + 10];
        }

        private int prev(int x) {
            return x & (x - 1);
        }

        private int next(int x) {
            return 2 * x - prev(x);
        }

        void increase(int id, int value) {
            id++;
            while (id < sum.length) {
                sum[id] += value;
                id = next(id);
            }
        }

        long find(int id) {
            id++;
            id = Math.min(sum.length - 1, id);
            long res = 0;
            if (id <= 0) {
                return 0;
            }
            while (id > 0) {
                res += sum[id];
                id = prev(id);
            }
            return res;
        }
    }
}
                    


                        Solution in Python : 
                            
In  Python3 :








import resource
import sys
sys.setrecursionlimit(2000000)

def add(x, v):
    x += 1
    while x <= n:
        a[x] += v
        x += x & -x

def que(x):
    x += 1
    if x <= 0:
        return 0
    ret = 0
    x = min(n, x)
    while x > 0:
        ret += a[x]
        x -= x & -x
    return ret

st = []
vis = {}
def dfs(x):
    
    global ans
    st.append(x)
    while st:
        x = st[-1]
        if not x in vis:
            ans += que(x + T) - que(x - T - 1)
            add(x, 1)
            vis[x] = 1
        if nx[x]:
            st.append(nx[x][-1])
            nx[x].pop()
        else:
            st.pop()
            add(x, -1)

n, T = (int(x) for x in input().split())
a = [0 for i in range(4 * n)]
nx = [[] for i in range(n)]
pre = [-1 for i in range(n)]
for i in range(n - 1):
    s, e = (int(x) - 1 for x in input().split())
    nx[s].append(e)
    pre[e] = s
    
s = 1
while pre[s] != -1:
    s = pre[s]
ans = 0
dfs(s)
print(ans)
                    


View More Similar Problems

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

View Solution →

Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

View Solution →

Is This a Binary Search Tree?

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a

View Solution →

Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the

View Solution →