Shopping Change - CodeChef


Problem Statement :


Chef went shopping and bought items worth X rupees (1≤X≤100). Unfortunately, Chef only has a single 100 rupees note.

Since Chef is weak at maths, can you help Chef in calculating what money he should get back after paying 100 rupees for those items?

Input Format

First line will contain T, the number of test cases. Then the test cases follow.
Each test case consists of a single line containing an integer X, the total price of items Chef purchased.

Output Format

For each test case, output in a single line the money Chef has to receive back.

Constraints
1≤T≤100
1≤X≤100


Sample Input 1 

3
1
25
100

Sample Output 1 

99
75
0

Explanation

Test case-1: Since chef paid 100 rupees for items worth 1 rupee. He should get back 99 rupees.

Test case-2: Since chef paid 100 rupees for items worth 25 rupees. He should get back 75 rupees.



Solution :



title-img




                        Solution in C++ :

#include <iostream>
#include <cstdio>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <unordered_set>
#include <vector>
#include <algorithm>
#include <sys/time.h>
#include <climits>
#include <cmath>
#include <unordered_map>
#include <list>
#include <functional>
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t)) 
#define REP(i, e) for (int i = 0; i < (e); ++i) 
#define REP1(i, s, e) for (int i = (s); i < (e); ++i)
#define RREP(i, e) for (int i = (e); i >= 0; --i)
#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)
ll inf = 1e18;
int __FAST_IO__ = []() {
	std::ios::sync_with_stdio(0);
	std::cin.tie(0);
	std::cout.tie(0);
	return 0;
}();

int main() {
    int t;
    cin >> t;
    while (t--) {
    	int N;
    	cin >> N;
    	printf("%d\n", 100 - N);
    }
    
    return 0;
}
                    


                        Solution in Java :

import java.util.*;
import java.io.*;

public class Main {

    static long startTime = System.currentTimeMillis();

    // for global initializations and methods starts here

    // global initialisations and methods end here

    static void run() {
        boolean tc = true;
        AdityaFastIO r = new AdityaFastIO();
        //FastReader r = new FastReader();

        try (OutputStream out = new BufferedOutputStream(System.out)) {

            //long startTime = System.currentTimeMillis();

            int testcases = tc ? r.ni() : 1;
            int tcCounter = 1;
            // Hold Here Sparky------------------->>>
            // Solution Starts Here

            start:
            while (testcases-- > 0) {
                out.write((100 - r.ni() + " ").getBytes());
                out.write(("\n").getBytes());
            }
            // Solution Ends Here
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    static class AdityaFastIO {
        final private int BUFFER_SIZE = 1 << 16;
        private final DataInputStream din;
        private final byte[] buffer;
        private int bufferPointer, bytesRead;
        public BufferedReader br;
        public StringTokenizer st;

        public AdityaFastIO() {
            br = new BufferedReader(new InputStreamReader(System.in));
            din = new DataInputStream(System.in);
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public AdityaFastIO(String file_name) throws IOException {
            din = new DataInputStream(new FileInputStream(file_name));
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        public String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        public String readLine() throws IOException {
            byte[] buf = new byte[100000001]; // line length
            int cnt = 0, c;
            while ((c = read()) != -1) {
                if (c == '\n') break;
                buf[cnt++] = (byte) c;
            }
            return new String(buf, 0, cnt);
        }

        public int ni() throws IOException {
            int ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public long nl() throws IOException {
            long ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public double nd() throws IOException {
            double ret = 0, div = 1;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
            if (neg) return -ret;
            return ret;
        }

        private void fillBuffer() throws IOException {
            bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
            if (bytesRead == -1) buffer[0] = -1;
        }

        private byte read() throws IOException {
            if (bufferPointer == bytesRead) fillBuffer();
            return buffer[bufferPointer++];
        }

        public void close() throws IOException {
            if (din == null) return;
            din.close();
        }
    }

    public static void main(String[] args) throws Exception {
        run();
    }

    static int[] readIntArr(int n, AdityaFastIO r) throws IOException {
        int[] arr = new int[n];
        for (int i = 0; i < n; i++) arr[i] = r.ni();
        return arr;
    }

    static long[] readLongArr(int n, AdityaFastIO r) throws IOException {
        long[] arr = new long[n];
        for (int i = 0; i < n; i++) arr[i] = r.nl();
        return arr;
    }

    static List<Integer> readIntList(int n, AdityaFastIO r) throws IOException {
        List<Integer> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.ni());
        return al;
    }

    static List<Long> readLongList(int n, AdityaFastIO r) throws IOException {
        List<Long> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.nl());
        return al;
    }

    static long mod = 998244353;

    static long modInv(long base, long e) {
        long result = 1;
        base %= mod;
        while (e > 0) {
            if ((e & 1) > 0) result = result * base % mod;
            base = base * base % mod;
            e >>= 1;
        }
        return result;
    }

    static class FastReader {
        BufferedReader br;
        StringTokenizer st;

        public FastReader() {
            br = new BufferedReader(new InputStreamReader(System.in));
        }

        String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        int ni() {
            return Integer.parseInt(word());
        }

        long nl() {
            return Long.parseLong(word());
        }

        double nd() {
            return Double.parseDouble(word());
        }
    }

    static int MOD = (int) (1e9 + 7);

    static long powerLL(long x, long n) {
        long result = 1;
        while (n > 0) {
            if (n % 2 == 1) result = result * x % MOD;
            n = n / 2;
            x = x * x % MOD;
        }
        return result;
    }

    static long powerStrings(int i1, int i2) {
        String sa = String.valueOf(i1);
        String sb = String.valueOf(i2);
        long a = 0, b = 0;
        for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
        for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
        return powerLL(a, b);
    }

    static long gcd(long a, long b) {
        if (a == 0) return b;
        else return gcd(b % a, a);
    }

    static long lcm(long a, long b) {
        return (a * b) / gcd(a, b);
    }

    static long lower_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] >= x) r = m;
            else l = m;
        }
        return r;
    }

    static int upper_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] <= x) l = m;
            else r = m;
        }
        return l + 1;
    }

    static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
        graph.get(edge1).add(edge2);
        graph.get(edge2).add(edge1);
    }

    public static class Pair implements Comparable<Pair> {
        int first;
        int second;

        public Pair(int first, int second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(Pair o) {
            // TODO Auto-generated method stub
            if (this.first != o.first)
                return (int) (this.first - o.first);
            else return (int) (this.second - o.second);
        }
    }

    public static class PairC<X, Y> implements Comparable<PairC> {
        X first;
        Y second;

        public PairC(X first, Y second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(PairC o) {
            // TODO Auto-generated method stub
            return o.compareTo((PairC) first);
        }
    }

    static boolean isCollectionsSorted(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
        return true;
    }

    static boolean isCollectionsSortedReverseOrder(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
        return true;
    }

}
                    


                        Solution in Python : 
                            
t=int(input())
for _ in range(t):
	n=int(input())
	print(100-n)
                    


View More Similar Problems

Queries with Fixed Length

Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon

View Solution →

QHEAP1

This question is designed to help you get a better understanding of basic heap operations. You will be given queries of types: " 1 v " - Add an element to the heap. " 2 v " - Delete the element from the heap. "3" - Print the minimum of all the elements in the heap. NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct element

View Solution →

Jesse and Cookies

Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with: sweetness Least sweet cookie 2nd least sweet cookie). He repeats this procedure until all the cookies in his collection have a sweetness > = K. You are given Jesse's cookies. Print t

View Solution →

Find the Running Median

The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median.

View Solution →

Minimum Average Waiting Time

Tieu owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Tieu simply minimizes the average waiting time of his customers. So he gets to decide who is served first, regardless of how sooner or later a person comes. Different kinds of pizzas take different amounts of time to cook. Also, once h

View Solution →

Merging Communities

People connect with each other in a social network. A connection between Person I and Person J is represented as . When two persons belonging to different communities connect, the net effect is the merger of both communities which I and J belongs to. At the beginning, there are N people representing N communities. Suppose person 1 and 2 connected and later 2 and 3 connected, then ,1 , 2 and 3 w

View Solution →