Set.discard(), remove() & pop() Python
Problem Statement :
.remove(x) This operation removes element x from the set. If element x does not exist, it raises a KeyError. The .remove(x) operation returns None. Example: >>> s = set([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> s.remove(5) >>> print s set([1, 2, 3, 4, 6, 7, 8, 9]) >>> print s.remove(4) None >>> print s set([1, 2, 3, 6, 7, 8, 9]) >>> s.remove(0) KeyError: 0 .discard(x) This operation also removes element x from the set. If element x does not exist, it does not raise a KeyError. The .discard(x) operation returns None. Example: >>> s = set([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> s.discard(5) >>> print s set([1, 2, 3, 4, 6, 7, 8, 9]) >>> print s.discard(4) None >>> print s set([1, 2, 3, 6, 7, 8, 9]) >>> s.discard(0) >>> print s set([1, 2, 3, 6, 7, 8, 9]) .pop() This operation removes and return an arbitrary element from the set. If there are no elements to remove, it raises a KeyError. Example: >>> s = set([1]) >>> print s.pop() 1 >>> print s set([]) >>> print s.pop() KeyError: pop from an empty set Task: You have a non-empty set s, and you have to execute N commands given in N lines. The commands will be pop, remove and discard. Input Format: The first line contains integer N, the number of elements in the set s. The second line contains N space separated elements of set s. All of the elements are non-negative integers, less than or equal to 9. The third line contains integer N, the number of commands. The next N lines contains either pop, remove and/or discard commands followed by their associated value. Constraints: 1. 0<n<20 2. 0<N<20 Output Format: Print the sum of the elements of set s on a single line.
Solution :
Solution in C :
n = input()
s = set(map(int, input().split()))
for i in range(int(input())):
c = input().split()
if c[0] == 'pop':
s.pop()
elif c == 'remove':
s.remove(int(c[1]))
else:
s.discard(int(c[1]))
print(sum(s))
View More Similar Problems
Largest Rectangle
Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle
View Solution →Simple Text Editor
In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,
View Solution →Poisonous Plants
There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan
View Solution →AND xor OR
Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value
View Solution →Waiter
You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the
View Solution →Queue using Two Stacks
A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que
View Solution →