Separate the Numbers
Problem Statement :
A numeric string, , is beautiful if it can be split into a sequence of two or more positive integers, , satisfying the following conditions: for any (i.e., each element in the sequence is more than the previous element). No contains a leading zero. For example, we can split into the sequence , but it is not beautiful because and have leading zeroes. The contents of the sequence cannot be rearranged. For example, we can split into the sequence , but it is not beautiful because it breaks our first constraint (i.e., ). The diagram below depicts some beautiful strings: Perform queries where each query consists of some integer string . For each query, print whether or not the string is beautiful on a new line. If it is beautiful, print YES x, where is the first number of the increasing sequence. If there are multiple such values of , choose the smallest. Otherwise, print NO. Function Description Complete the separateNumbers function in the editor below. separateNumbers has the following parameter: s: an integer value represented as a string Prints - string: Print a string as described above. Return nothing. Input Format The first line contains an integer q, the number of strings to evaluate. Each of the next q lines contains an integer string s to query. Constraints 1 <= q <= 10 1 <= | s | <= 32
Solution :
Solution in C :
In C++ :
#pragma comment(linker, "/STACK:1000000000")
#include <cstdio>
#include <iostream>
#include <ctime>
#include <string>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <set>
#include <cstdlib>
#include <ctime>
#include <cassert>
#include <bitset>
#include <fstream>
#include <deque>
#include <stack>
#include <climits>
#include <string>
#include <queue>
#include <memory.h>
#include <map>
#include <unordered_map>
#define ll long long
#define ld double
#define pii pair <ll, ll>
#define mp make_pair
using namespace std;
int main() {
int q;
cin >> q;
while (q--) {
string s;
cin >> s;
if (s[0] == '0') {
cout << "NO\n";
continue;
}
ll now = 0;
bool st = false;
for (int i = 0; i < (int)s.size(); i++) {
now *= 10;
now += s[i] - '0';
ll res = 0;
if (s[i + 1] == '0') {
continue;
}
int cnt = 1;
for (int j = i + 1; j < (int)s.size(); j++) {
res *= 10;
res += s[j] - '0';
if (res == now + cnt) {
if (j + 1 == (int)s.size()) {
st = true;
break;
}
if (s[j + 1] == '0') {
break;
}
res = 0;
cnt++;
}
}
if (st) {
break;
}
}
if (st) {
cout << "YES " << now << endl;
} else {
cout << "NO\n";
}
}
return 0;
}
In Java :
import java.io.*;
import java.util.StringTokenizer;
public class Main {
private void solve() {
int n = rw.nextInt();
main:
for (int i = 0; i < n; ++i) {
String s = rw.next();
if (s.startsWith("0") || s.length() == 1) {
rw.println("NO");
continue;
}
long x, cur;
cy:
for (int j = 1; j <= s.length() / 2; ++j) {
x = Long.parseLong(s.substring(0, j));
cur = x + 1;
int c = j;
while (c < s.length()) {
String p = String.valueOf(cur);
cur += 1;
if (s.startsWith(p, c)) {
c += p.length();
} else {
continue cy;
}
}
rw.println("YES" + " " + x);
continue main;
}
rw.println("NO");
}
}
private RW rw;
private String FILE_NAME = "file";
public static void main(String[] args) {
new Main().run();
}
private void run() {
rw = new RW(FILE_NAME + ".in", FILE_NAME + ".out");
solve();
rw.close();
}
private class RW {
private StringTokenizer st;
private PrintWriter out;
private BufferedReader br;
private boolean eof;
RW(String inputFile, String outputFile) {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
File f = new File(inputFile);
if (f.exists() && f.canRead()) {
try {
br = new BufferedReader(new FileReader(inputFile));
out = new PrintWriter(new FileWriter(outputFile));
} catch (IOException e) {
e.printStackTrace();
}
}
}
private String nextLine() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return s;
}
private String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
private long nextLong() {
return Long.parseLong(next());
}
private int nextInt() {
return Integer.parseInt(next());
}
private void println() {
out.println();
}
private void println(Object o) {
out.println(o);
}
private void print(Object o) {
out.print(o);
}
private void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
out.close();
}
}
}
In C :
#include <stdio.h>
#include <string.h>
typedef unsigned long long int Long;
char s[33];
int q;
Long x;
int isZeroLead(int i) { return s[i] == '0'; }
Long read(int i, int sz) {
char *pt = s + i;
Long ans = 0;
while(sz-- && *pt) {
ans = ans*10 + (*pt - '0');
pt++;
}
return ans;
}
int digs(Long x) {
int ll = 0;
while(x) {
ll++;
x /= 10;
}
return ll;
}
int check(Long fst, int len) {
Long last = fst, curr;
int lsz = digs(fst);
for(int i = lsz; i < len; i += lsz) {
if(isZeroLead(i)) return 0;
if(digs(last + 1) != digs(last)) { lsz++; }
curr = read(i, lsz);
if(curr - last != 1) return 0;
last = curr;
}
return 1;
}
int main() {
scanf("%d",&q);
while(q--) {
scanf("%s", s);
Long x = -1, fst;
for(int i = 1, len = strlen(s); i <= (len>>1); i++) {
fst = read(0, i);
if(check(fst, len)) {
x = fst;
break;
}
}
if(x == -1) puts("NO");
else printf("YES %lld\n", x);
}
return 0;
}
In Python3 :
for _ in range(int(input())):
s = input().strip()
n = len(s)
x = ''
for i in s[:-1]:
x += i
y = int(x)
z = ''
while len(z) < n:
z += str(y)
y += 1
if n == len(z) and z == s:
print("YES", x)
break
else:
print("NO")
View More Similar Problems
Balanced Forest
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a
View Solution →Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →Self Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution →Array and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution →