Roads and Libraries
Problem Statement :
Determine the minimum cost to provide library access to all citizens of HackerLand. There are n cities numbered from 1 to n. Currently there are no libraries and the cities are not connected. Bidirectional roads may be built between any city pair listed in cities. A citizen has access to a library if: 1. Their city contains a library. 2. They can travel by road from their city to a city containing a library. unction Description Complete the function roadsAndLibraries in the editor below. roadsAndLibraries has the following parameters: int n: integer, the number of cities int c_lib: integer, the cost to build a library int c_road: integer, the cost to repair a road int cities[m][2]: each cities[ i ] contains two integers that represent cities that can be connected by a new road Returns - int: the minimal cost Input Format The first line contains a single integer q, that denotes the number of queries. The subsequent lines describe each query in the following format: - The first line contains four space-separated integers that describe the respective values of n , m , c_lib and c_road, the number of cities, number of roads, cost of a library and cost of a road. - Each of the next m lines contains two space-separated integers, u[ i ] and v[ i ] , that describe a bidirectional road that can be built to connect cities c[ i ] and v[ i ]. Sample Input STDIN Function ----- -------- 2 q = 2 3 3 2 1 n = 3, cities[] size m = 3, c_lib = 2, c_road = 1 1 2 cities = [[1, 2], [3, 1], [2, 3]] 3 1 2 3 6 6 2 5 n = 6, cities[] size m = 6, c_lib = 2, c_road = 5 1 3 cities = [[1, 3], [3, 4],...] 3 4 2 4 1 2 2 3 5 6 Sample Output 4 12
Solution :
Solution in C :
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#define swap_(x, y) { int z = x; x = y; y = z; }
typedef long long ll;
typedef struct L
{
int *xs;
int n;
int size;
} L;
void add(L *l, int x)
{
if (l->n == l->size)
{
l->size *= 2;
l->xs = realloc(l->xs, sizeof(int) * l->size);
assert(l->xs);
}
l->xs[l->n++] = x;
}
void ini(L *l)
{
l->n = 0;
l->size = 4;
l->xs = malloc(sizeof(int) * l->size);
assert(l->xs);
}
L *create()
{
L *l = malloc(sizeof(L));
assert(l);
ini(l);
return l;
}
L *ls[100000];
ll solve()
{
int n, m;
ll rc, lc;
scanf("%d%d%lld%lld", &n, &m, &lc, &rc);
for (int i = 0; i < n; ++i)
{
ls[i] = NULL;
}
int count = 0;
for (int _i = 0; _i < m; ++_i)
{
int i, j;
scanf("%d%d", &i, &j);
i--; j--;
if (lc <= rc)
{
continue;
}
if (ls[i] == ls[j])
{
if (ls[i] == NULL)
{
L *l = create();
add(l, i);
add(l, j);
count++;
ls[i] = l;
ls[j] = l;
}
}
else
{
count++;
if (ls[i] == NULL)
{
swap_(i, j);
}
if (ls[j] == NULL)
{
add(ls[i], j);
ls[j] = ls[i];
}
else
{
if (ls[i]->n < ls[j]->n)
{
swap_(i, j);
}
L *l = ls[j];
for (int p = 0; p < l->n; ++p)
{
int k = l->xs[p];
add(ls[i], k);
ls[k] = ls[i];
}
free(l->xs);
free(l);
}
}
}
return rc * count + lc * (n - count);
}
int main()
{
int q;
scanf("%d", &q);
for (int i = 0; i < q; ++i)
{
ll min_cost = solve();
printf("%lld\n", min_cost);
}
return 0;
}
Solution in C++ :
In C++ :
#include <bits/stdc++.h>
using namespace std;
vector<int> p;
int f(int a){return p[a]==a?a:p[a]=f(p[a]);}
void u(int a, int b){p[f(a)] = f(b);}
signed main()
{
int T;cin >> T;while(T--){
int N, M, a, b;
long long c, d;
cin >> N >> M >> c >> d;
p.clear();p.resize(N);
iota(p.begin(), p.end(), 0);
while(M--){
cin >> a >> b;
--a, --b;
u(a, b);
}
int comp=0;
for(int i=0;i<N;++i){
if(p[i]==i)++comp;
}
cout << (comp*c+(N-comp)*min(c, d)) << "\n";
}
return 0;
}
Solution in Java :
In C++ :
#include <bits/stdc++.h>
using namespace std;
vector<int> p;
int f(int a){return p[a]==a?a:p[a]=f(p[a]);}
void u(int a, int b){p[f(a)] = f(b);}
signed main()
{
int T;cin >> T;while(T--){
int N, M, a, b;
long long c, d;
cin >> N >> M >> c >> d;
p.clear();p.resize(N);
iota(p.begin(), p.end(), 0);
while(M--){
cin >> a >> b;
--a, --b;
u(a, b);
}
int comp=0;
for(int i=0;i<N;++i){
if(p[i]==i)++comp;
}
cout << (comp*c+(N-comp)*min(c, d)) << "\n";
}
return 0;
}
Solution in Python :
In Python3 :
#!/bin/python3
import sys
def find_root(roots, city):
i = roots[city]
while(i != roots[i]):
i = roots[i]
return roots[i]
q = int(input().strip())
for a0 in range(q):
n,m,x,y = input().strip().split(' ')
n,m,x,y = [int(n),int(m),int(x),int(y)]
root = [x for x in range(n+1)]
cost = 0
if(x <= y):
print(n*x)
for _ in range(m):
x = input()
continue
for a1 in range(m):
city_1,city_2 = input().strip().split(' ')
city_1,city_2 = [int(city_1),int(city_2)]
temp1 = find_root(root, city_1)
temp2 = find_root(root, city_2)
if(temp1 != temp2):
root[temp1] = temp2
cost += y
for i in range(1,n+1):
if(i == root[i]):
cost +=x
print(cost)
View More Similar Problems
Compare two linked lists
You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis
View Solution →Merge two sorted linked lists
This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C
View Solution →Get Node Value
This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t
View Solution →Delete duplicate-value nodes from a sorted linked list
This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -
View Solution →Cycle Detection
A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer
View Solution →Find Merge Point of Two Lists
This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share
View Solution →