Recursive Digit Sum


Problem Statement :


We define super digit of an integer x using the following rules:

Given an integer, we need to find the super digit of the integer.

If x has only 1 digit, then its super digit is x.
Otherwise, the super digit of x  is equal to the super digit of the sum of the digits of x.


For example, the super digit of9875  will be calculated as:

	super_digit(9875)   	9+8+7+5 = 29 
	super_digit(29) 	2 + 9 = 11
	super_digit(11)		1 + 1 = 2
	super_digit(2)		= 2  



Function Description

Complete the function superDigit in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

string n: a string representation of an integer
int k: the times to concatenate n to make p


Returns

int: the super digit of n repeated k times


Input Format

The first line contains two space separated integers, n and k.


Constraints


1   <=   n   <=   10^100000
1  <=   k   <=  10^5



Solution :



title-img


                            Solution in C :

In    C  :






#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int main() {
    long long sd=0,h;
    int k;
    int c;
    do{
        c=getchar();
        if(c != ' ')
            sd += c -'0'; 
    }while(c != ' ');
    scanf("%d",&k);
    sd *= k;
    
    while(sd > 10){
        h=0;
        while(sd > 0){
            h+= sd %10;
            sd = sd /10;
        }
        sd =h;
    }
    printf("%lld\n",sd);

    return 0;
}
                        


                        Solution in C++ :

In  C++ :







#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int k=0,flag=1;
int sum(string s){
   int64_t a=0,b;
    for(int i=0;i<s.size();i++){
        b=s[i]-48;
        a+=b;
    }
    return a;
}
void super(int64_t a){
    if(a/10==0)
        {
        if(flag){
            flag=0;
        super(a*k);
            }
        else
            cout<<a;
     }
    else{
      int64_t val=0;
        while(a){
            val+=a%10;
            a=a/10;
        }
        super(val);
     }
}

int main() {
    string s;
    int64_t a;
    cin>>s>>k;
    a=sum(s);
    super(a);
 
    return 0;
}
                    


                        Solution in Java :

In   Java  :







import java.io.*;
import java.util.*;

public class Solution {

    public static void main(String[] args) {
        Solution s = new Solution();
        Scanner sc = new Scanner(System.in);
        
        String str_n = sc.next();
        int k = sc.nextInt();
        
        int pSum = Integer.parseInt(s.supdig(str_n));
        pSum *= k;
                        
        String sup = Integer.toString(s.supdig(pSum));
        
        System.out.println(sup);
    }
    
    String supdig(String n) {
        if(n.length() == 1) return n;
        else {
            int np = 0;
            
            for(int i = 0; i < n.length(); i++) {
                np += Character.getNumericValue( n.charAt(i) );    
            }
            
            return supdig(Integer.toString(np));
        }       
    }
    
    int supdig(int n) {
        if(n / 10 == 0) return n;
        else {
            int r = 0;
            
            while(n > 0) {
                r += n % 10;
                n /= 10;
            }
            
            return supdig(r);
        }
    }
}
                    


                        Solution in Python : 
                            
In   Python3  :






#!/bin/python3


def digits_sum(n):
    s = 0
    while n > 9:
        s += n % 10
        n //= 10
    s += n
    return s


def super_digit(n):
    d = digits_sum(n)
    if d < 10:
        return d
    return super_digit(d)


def super_digit_iter(n):
    d = digits_sum(n)
    while d > 9:
        d = digits_sum(d)
    return d


def main():
    n, k = map(int, input().strip().split(' '))
    print(super_digit_iter(digits_sum(n) * k))


if __name__ == "__main__":
    main()
                    


View More Similar Problems

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →