Polynomial Division
Problem Statement :
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficients such that each coefficient of is divisible by Q( x ) = a*x + b. If a valid exists, print Yes on a new line; otherwise, print No. Given the values of , , , and queries, perform each query in order. Input Format The first line contains four space-separated integers describing the respective values of n (the length of the sequence), a (a coefficient in Q( x ) ), b (a coefficient in Q( x ) ), and q(the number of queries). The second line contains n space-separated integers describing c0, c1, . . . , cn-1. Each of the q subsequent lines contains three space-separated integers describing a query of either type 1 or type 2. Output Format For each query of type 2, print Yes on a new line if Q(x) is a divisor of P(x); otherwise, print No instead. Sample Input 0 3 2 2 3 1 2 3 2 0 2 1 2 1 2 0 2 Sample Output 0 No Yes
Solution :
Solution in C :
In C ++ :
#include <bits/stdc++.h>
using namespace std;
typedef pair<long long int,long long int> pll;
const int T = (1<<17);
const long long int MOD = 1000000007;
long long int X;
pll seg[2*T];
long long int power(long long int a, int b)
{
if(!b)
return 1;
long long int ans = power(a,b/2);
ans = (ans*ans)%MOD;
if(b%2)
ans = (ans*a)%MOD;
return ans;
}
pll seg_merge(pll &v1, pll &v2)
{
pll ret;
ret.first = (v1.first + v2.first*power(X,v1.second))%MOD;
ret.second = v1.second + v2.second;
return ret;
}
pll que(int root, int lm, int rm, int u, int v)
{
if(u <= lm && rm <= v)
return seg[root];
int mid = (lm + rm)/2;
if(u <= mid)
{
pll lval = que(2*root, lm, mid, u, v);
if(mid < v)
{
pll rval = que(2*root+1, mid+1, rm, u, v);
return seg_merge(lval,rval);
}
return lval;
}
pll rval = que(2*root+1, mid+1, rm, u, v);
return rval;
}
int main()
{
int n,a,b,q;
scanf("%d %d %d %d", &n, &a, &b, &q);
X = ((MOD - b)*power(a,MOD-2))%MOD;
for (int i = 0; i < n; ++i)
{
scanf("%lld", &seg[T+i].first);
seg[T+i].second = 1;
}
for (int i = T-1; i >= 1; --i)
seg[i] = seg_merge(seg[2*i],seg[2*i+1]);
while(q--)
{
int ch;
scanf("%d", &ch);
if(ch == 1)
{
int pos, val;
scanf("%d %d", &pos, &val);
pos+=T;
seg[pos].first = val;
pos/=2;
while(pos)
{
seg[pos] = seg_merge(seg[2*pos],seg[2*pos+1]);
pos/=2;
}
}
else
{
int l,r;
scanf("%d %d", &l, &r);
l+=T;
r+=T;
pll ans = que(1, T, 2*T-1, l, r);
if(ans.first)
printf("No\n");
else
printf("Yes\n");
}
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
public class D {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
static final int P = 1_000_000_007;
int pow(int a, int b) {
int ret = 1;
for (; b > 0; b >>= 1) {
if ((b & 1) == 1) {
ret = (int) ((long) ret * a % P);
}
a = (int) ((long) a * a % P);
}
return ret;
}
void add(long[] f, int pos, long delta) {
for (int i = pos; i < f.length; i |= i + 1) {
f[i] += delta;
}
}
long get(long[] f, int pos) {
long ret = 0;
for (int i = pos; i >= 0; i = (i & (i + 1)) - 1) {
ret += f[i];
}
return ret;
}
void solve() throws IOException {
int n = nextInt();
int a = nextInt();
int b = nextInt();
int q = nextInt();
int x;
if (a == 0) {
x = 1;
} else {
x = (int) ((long) b * pow(a, P - 2) % P);
if (x != 0) {
x = P - x;
}
}
int[] pow = new int[n];
pow[0] = 1;
for (int i = 1; i < n; i++) {
pow[i] = (int) ((long) pow[i - 1] * x % P);
}
int[] arr = new int[n];
int[] arrX = new int[n];
long[] fen = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
arrX[i] = (int) ((long) arr[i] * pow[i] % P);
add(fen, i, arrX[i]);
}
for (int i = 0; i < q; i++) {
int type = nextInt();
if (type == 1) {
int pos = nextInt();
int val = nextInt();
add(fen, pos, -arrX[pos]);
arr[pos] = val;
arrX[pos] = (int) ((long) val * pow[pos] % P);
add(fen, pos, arrX[pos]);
} else {
int l = nextInt();
int r = nextInt();
// [l; r]
long sumR = get(fen, r);
long sumL = get(fen, l - 1);
if (a == 0 && b == 0) {
out.println(sumR - sumL == 0 ? "Yes" : "No");
} else if (a == 0 && b != 0) {
out.println("Yes");
} else if (a != 0 && b == 0) {
out.println(arr[l] == 0 ? "Yes" : "No");
} else {
out.println((sumR - sumL) % P == 0 ? "Yes" : "No");
}
}
}
}
D() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new D();
}
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define MOD 1000000007
void build(int v,int tl,int tr);
void update(int v,int tl,int tr,int pos,int new_val);
long long sum(int v,int tl,int tr,int l,int r);
long long modInverse(long long a,long long mod);
int min(int x,int y);
int max(int x,int y);
int c[100000];
long long dp[100000],t[400000];
int main(){
int n,a,b,q,x,y,a_inv,i;
scanf("%d%d%d%d",&n,&a,&b,&q);
a_inv=modInverse(a,MOD);
for(i=dp[0]=1;i<100000;i++)
dp[i]=(MOD-dp[i-1]*b%MOD*a_inv%MOD)%MOD;
for(i=0;i<n;i++)
scanf("%d",c+i);
build(1,0,n-1);
while(q--){
scanf("%d",&x);
if(x==1){
scanf("%d%d",&x,&y);
update(1,0,n-1,x,y);
}
else{
scanf("%d%d",&x,&y);
if(sum(1,0,n-1,x,y))
printf("No\n");
else
printf("Yes\n");
}
}
return 0;
}
void build(int v,int tl,int tr){
int tm;
if(tl==tr)
t[v]=c[tl];
else{
tm=(tl+tr)/2;
build(v*2,tl,tm);
build(v*2+1,tm+1,tr);
t[v]=(t[v*2]+t[v*2+1]*dp[tm-tl+1])%MOD;
}
return;
}
void update(int v,int tl,int tr,int pos,int new_val){
int tm;
if(tl==tr)
t[v]=new_val;
else{
tm=(tl+tr)/2;
if(pos<=tm)
update(v*2,tl,tm,pos,new_val);
else
update(v*2+1,tm+1,tr,pos,new_val);
t[v]=(t[v*2]+t[v*2+1]*dp[tm-tl+1])%MOD;
}
return;
}
long long sum(int v,int tl,int tr,int l,int r){
int tm,temp;
if(l>r)
return 0;
if(l==tl && r==tr)
return t[v];
tm=(tl+tr)/2;
if(min(r,tm)>=l)
temp=min(r,tm)-l+1;
else
temp=0;
return (sum(v*2,tl,tm,l,min(r,tm))+sum(v*2+1,tm+1,tr,max(l,tm+1),r)*dp[temp])%MOD;
}
long long modInverse(long long a,long long mod){
long long b0 = mod, t, q;
long long x0 = 0, x1 = 1;
while (a > 1) {
q = a / mod;
t = mod; mod = a % mod; a = t;
t = x0; x0 = x1 - q * x0; x1 = t;
}
if (x1 < 0) x1 += b0;
return x1;
}
int min(int x,int y){
return (x<y)?x:y;
}
int max(int x,int y){
return (x>y)?x:y;
}
In Python3 :
def init(R, x, p):
T = [R]
while len(R) > 1:
if len(R) & 1: R.append(0)
R = [(R[i] + x * R[i+1]) % p for i in range(0,len(R),2)]
x = (x * x) % p
T.append(R)
return T
def update(T, i, x, p):
S = T[0]
for j in range(1, len(T)):
R = T[j]
i >>= 1
R[i] = (S[2*i] + x*S[2*i+1]) % p
S = R
x = (x * x) % p
def query(T, i, x, p):
if i == 0: return T[-1][0]
s = 0
y = 1
for j in range(len(T)-1):
if i & 1:
s = (s + y * T[j][i]) % p
y = (y * x) % p
i = (i + 1) >> 1
x = (x * x) % p
return s
p = 10**9 + 7
n, a, b, q = map(int, input().split())
c = [int(x) for x in input().split()]
x = (-b * pow(a,p-2,p)) % p
T = init(c, x, p)
for Q in range(q):
k, a, b = map(int, input().split())
if k == 1:
c[a] = b
update(T, a, x, p)
elif k == 2:
y = (query(T,a,x,p) - query(T,b+1,x,p) * pow(x,b-a+1,p)) % p
print('No' if y else 'Yes')
View More Similar Problems
Tree : Top View
Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.
View Solution →Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →Binary Search Tree : Insertion
You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <
View Solution →Tree: Huffman Decoding
Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t
View Solution →Binary Search Tree : Lowest Common Ancestor
You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b
View Solution →Swap Nodes [Algo]
A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from
View Solution →