Palindrome Linked List - Amazon Top Interview Questions


Problem Statement :


Given a singly linked list node whose values are integers, determine whether the linked list forms a palindrome.

Constraints

n ≤ 100,000 where n is the length of node

Example 1

Input

node = [5, 3, 5]

Output

True

Explanation

5 -> 3 -> 5 is a palindrome.

Example 2

Input

node = [12, 8, 12]

Output

True

Explanation

The values of the linked list are the same forwards and backwards.



Solution :



title-img




                        Solution in C++ :

bool checkPalindrome(LLNode *node, LLNode **curr) {
    if (node == NULL) return true;
    bool check = checkPalindrome(node->next, curr);
    if (node->val != (*curr)->val) return false;
    *curr = (*curr)->next;
    return check;
}
bool solve(LLNode *node) {
    LLNode *curr = node;
    return checkPalindrome(node, &curr);
}
                    




                        Solution in Python : 
                            
class Solution:
    def solve(self, node):
        fast, slow = node, node
        while fast and fast.next:
            fast = fast.next.next
            slow = slow.next

        right = None
        while slow:
            p = slow.next
            slow.next = right
            right = slow
            slow = p

        left = node
        while left is not None and right is not None:
            if left.val != right.val:
                return False
            left = left.next
            right = right.next
        return True
                    


View More Similar Problems

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →

Maximum Element

You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each

View Solution →