Oil Wel
Problem Statement :
Mr. Road Runner bought a piece of land in the middle of a desert for a nominal amount. It turns out that the piece of land is now worth millions of dollars as it has an oil reserve under it. Mr. Road Runner contacts the ACME corp to set up the oil wells on his land. Setting up oil wells is a costly affair and the charges of setting up oil wells are as follows. The rectangular plot bought by Mr. Road Runner is divided into r * c blocks. Only some blocks are suitable for setting up the oil well and these blocks have been marked. ACME charges nothing for building the first oil well. For every subsequent oil well built, the cost would be the maximum ACME distance between the new oil well and the existing oil wells. If (x,y) is the position of the block where a new oil well is setup and (x1, y1) is the position of the block of an existing oil well, the ACME distance is given by max(|x-x1|, |y-y1|) the maximum ACME distance is the maximum among all the ACME distance between existing oil wells and new wells. If the distance of any two adjacent blocks (horizontal or vertical) is considered 1 unit, what is the minimum cost (E) in units it takes to set up oil wells across all the marked blocks? Input Format The first line of the input contains two space separated integers r *c*. r lines follow each containing c space separated integers. 1 indicates that the block is suitable for setting up an oil well, whereas 0 isn't. r c M11 M12 ... M1c M21 M22 ... M2c ... Mr1 Mr2 ... Mrc Constraints 1 <= r, c <= 50 Output Format Print the minimum value E as the answer.
Solution :
Solution in C :
In C++ :
#include <iostream>
using namespace std;
#define M 53
#define INF 30300000
int n,m,a[M][M],s[M][M][M][M];
void read(void){
cin>>n>>m;
for (int i=0; i<n; ++i)
for (int j=0; j<m; ++j)
cin>>a[i][j];
}
int mod(int x){
return x<0 ? -x:x;
}
int fine(int x, int y, int l, int r, int u, int d){
return max(max(abs(l-x),abs(x-r)),max(abs(y-d),abs(y-u)));
}
void din(void){
for (int i=0; i<n; ++i)
for (int l=0; l+i<n; ++l)
for (int j=0; j<m; ++j)
for (int u=0; u+j<m; ++u){
int r=l+i;
int d=u+j;
if (l==r && u==d){
s[l][r][u][d]=0;
continue;
}
int h=INF;
if (l<r){
int kl=0,kr=0;
for (int j=u; j<=d; ++j){
if (a[l][j])
kl+=fine(l,j,l+1,r,u,d);
if (a[r][j])
kr+=fine(r,j,l,r-1,u,d);
}
h=min(h,s[l+1][r][u][d]+kl);
h=min(h,s[l][r-1][u][d]+kr);
}
if (u<d){
int ku=0,kd=0;
for (int j=l; j<=r; ++j){
if (a[j][u])
ku+=fine(j,u,l,r,u+1,d);
if (a[j][d])
kd+=fine(j,d,l,r,u,d-1);
}
h=min(h,s[l][r][u+1][d]+ku);
h=min(h,s[l][r][u][d-1]+kd);
}
s[l][r][u][d]=h;
//cout<<l<<' '<<r<<' '<<u<<' '<<d<<"->"<<h<<"\n";
}
cout<<s[0][n-1][0][m-1]<<"\n";
}
int main(){
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
read();
din();
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static int dist(int x1,int y1,int x2,int y2) {
int x = x1 - x2, y = y1 - y2;
if (x < 0) {
x = -x;
}
if (y < 0) {
y = -y;
}
return (x > y)?x:y;
}
public static int cost(int x,int y,int x1,int y1,int x2,int y2) {
int d1 = dist(x,y,x1,y1), d2 = dist(x,y,x2,y2);
return (d1 > d2)?d1:d2;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int row = scanner.nextInt(), col = scanner.nextInt();
int [][] a = new int [row][col];
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
a[i][j] = scanner.nextInt();
}
}
int[][][][] result = new int [row][col][row][col];
for (int x1 = row - 1; x1 >= 0; --x1) {
for (int y1 = col - 1; y1 >= 0; --y1) {
for (int x2 = x1; x2 < row; ++x2) {
for (int y2 = (x1 == x2)?(y1 + 1):y1; y2 < col; ++y2) {
result[x1][y1][x2][y2] = 1000000000;
if (x1 < x2) {
int temp = result[x1 + 1][y1][x2][y2];
for (int y = y1; y <= y2; ++y) {
if (a[x1][y] == 1) {
temp += cost(x1, y, x1 + 1, y1, x2, y2);
}
}
if (result[x1][y1][x2][y2] > temp) {
result[x1][y1][x2][y2] = temp;
}
temp = result[x1][y1][x2 - 1][y2];
for (int y = y1; y <= y2; ++y) {
if (a[x2][y] == 1) {
temp += cost(x2, y, x1 ,y1, x2 - 1, y2);
}
}
if (result[x1][y1][x2][y2] > temp) {
result[x1][y1][x2][y2] = temp;
}
}
if (y1 < y2) {
int temp = result[x1][y1 + 1][x2][y2];
for (int x = x1; x <= x2; ++x) {
if (a[x][y1] == 1) {
temp += cost(x, y1, x1, y1 + 1, x2, y2);
}
}
if (result[x1][y1][x2][y2] > temp) {
result[x1][y1][x2][y2] = temp;
}
temp = result[x1][y1][x2][y2 - 1];
for (int x = x1; x <= x2; ++x) {
if (a[x][y2] == 1) {
temp += cost(x, y2, x1, y1, x2, y2 - 1);
}
}
if (result[x1][y1][x2][y2] > temp) {
result[x1][y1][x2][y2] = temp;
}
}
}
}
}
}
System.out.println(result[0][0][row - 1][col - 1]);
}
}
In C :
#include <stdio.h>
int a[55][55][55][55],b[55][55],t,i,j,k,l,m,n,r,c,dy,dx;
int z[55][55][55],v[55][55][55],u;
int main()
{
scanf("%d %d", &r, &c);
for(i=0;i<r;i++)
for(j=0;j<c;j++)
scanf("%d",&b[i][j]);
for(i=0;i<c;i++)
for(j=0;j<r;j++)
{
z[j][j][i] = b[j][i];
for(k=j+1;k<r;k++) z[j][k][i] = z[j][k-1][i] + b[k][i];
}
for(i=0;i<r;i++)
for(j=0;j<c;j++)
{
v[i][j][j] = b[i][j];
for(k=j+1;k<c;k++) v[i][j][k] = v[i][j][k-1] + b[i][k];
}
/*
for(i=0;i<r;i++)
for(k=0;k<r;k++)
for(j=0;j<c;j++)
for(l=j;l<c;l++)
*/
u = -1;
for(dy=0;dy<r;dy++)
for(dx=0;dx<c;dx++)
for(i=0;i+dy<r;i++)
for(j=0;j+dx<c;j++)
/*
for(dy=0;dy<2;dy++)
for(dx=0;dx<2;dx++)
for(i=0;i+dy<2;i++)
for(j=0;j+dx<2;j++)
*/
{
k = i+dy;
l = j+dx;
m = 2000000000;
if(k==i && l==j) m = 0;
if(k-i >= l-j && k-i > 0)
{
t = a[i+1][j][k][l];
if(v[k][j][l])
{
t += v[i][j][l]*(k-i);
if(t<m) m = t;
}
t = a[i][j][k-1][l];
if(v[i][j][l])
{
t += v[k][j][l]*(k-i);
if(t<m) m = t;
}
}
// printf("prve m %d\n",m);
if(k-i <= l-j && l-j > 0)
{
t = a[i][j+1][k][l];
if(z[i][k][l])
{
t += z[i][k][j]*(l-j);
if(t<m) m = t;
}
t = a[i][j][k][l-1];
if(z[i][k][j])
{
t += z[i][k][l]*(l-j);
if(t<m) m = t;
}
}
a[i][j][k][l] = m;
if(m!=2000000000 && m > u) u = m;
// if(m)
// printf("%d %d %d %d -> %d\n",i,j,k,l,m);
}
/*
for(i=0;i<r;i++)
for(j=0;j<c;j++)
for(k=j;k<c;k++)
printf("v %d %d %d -> %d\n", i,j,k, v[i][j][k]);
*/
/*
for(j=0;j<c;j++)
for(i=0;i<r;i++)
for(l=i;l<r;l++)
printf("z %d %d %d -> %d\n", i,l,j, z[i][l][j]);
*/
//k = a[0][0][r-1][c-1];
if(u<0) u = 0;
printf("%d\n",u);
return 0;
}
In Python3 :
r, c = list(map(int, input().strip().split()))
n = max(r, c)
g = [[0]*n for i in range(n)]
for i in range(r):
bs = list(map(int, input().strip().split()))
for j in range(c):
g[i][j] = bs[j]
x = [[0]*(n+1) for i in range(n+1)]
for i in range(n):
for j in range(n):
x[i+1][j+1] = x[i+1][j] + x[i][j+1] - x[i][j] + g[i][j]
fs = g
fz = [[0]*n for i in range(n)]
ans = [[0]*n for i in range(n)]
anz = [[0]*n for i in range(n)]
for d in range(1,n):
for i in range(n-d):
I = i + d + 1
for j in range(n-d):
J = j + d + 1
total = fz[i][j] = x[I][J] - x[i][J] - x[I][j] + x[i][j]
anz[i][j] = min(
ans[i ][j ] + d*(total - fs[i ][j ]),
ans[i ][j+1] + d*(total - fs[i ][j+1]),
ans[i+1][j ] + d*(total - fs[i+1][j ]),
ans[i+1][j+1] + d*(total - fs[i+1][j+1]),
)
ans, anz = anz, ans
fs, fz = fz, fs
print (ans[0][0])
View More Similar Problems
Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →Self Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution →Array and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution →Median Updates
The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o
View Solution →Maximum Element
You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each
View Solution →Balanced Brackets
A bracket is considered to be any one of the following characters: (, ), {, }, [, or ]. Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and (). A matching pair of brackets is not balanced if the set of bra
View Solution →