N Queens Puzzle - Amazon Top Interview Questions


Problem Statement :


The n queens puzzle asks to place n queens on an n×n chessboard so that no two queens are attacking each other.

Given a partially filled two-dimensional integer matrix where 1 represents a queen and 0 represents an empty cell, return whether this configuration of the board can solve the puzzle.

Constraints

1 ≤ n ≤ 15

Example 1

Input

matrix = [
    [1, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 1, 0]
]

Output

True

Explanation

One solution is:

[1, 0, 0, 0, 0]
[0, 0, 1, 0, 0]
[0, 0, 0, 0, 1]
[0, 1, 0, 0, 0]
[0, 0, 0, 1, 0]



Solution :



title-img




                        Solution in C++ :

int N;
bool canPlace(vector<vector<int>>& matrix, int row, int col) {
    for (int i = 0; i < N; ++i) {
        if (matrix[i][col] or matrix[row][i]) return false;
    }
    int x = row, y = col;
    while (x >= 0 and y >= 0) {
        if (matrix[x--][y--]) return false;
    }
    x = row, y = col;
    while (x >= 0 and y < N) {
        if (matrix[x--][y++]) return false;
    }
    x = row, y = col;
    while (x < N and y >= 0) {
        if (matrix[x++][y--]) return false;
    }
    x = row, y = col;
    while (x < N and y < N) {
        if (matrix[x++][y++]) return false;
    }
    return true;
}
bool alreadyFilled(vector<vector<int>>& matrix, int row) {
    for (int j = 0; j < N; ++j) {
        if (matrix[row][j]) return true;
    }
    return false;
}
bool nQueen(vector<vector<int>>& matrix, int row) {
    if (row == N) {
        return true;
    }
    if (alreadyFilled(matrix, row)) return nQueen(matrix, row + 1);
    for (int j = 0; j < N; ++j) {
        if (canPlace(matrix, row, j)) {
            matrix[row][j] = 1;
            if (nQueen(matrix, row + 1)) return true;
            matrix[row][j] = 0;
        }
    }
    return false;
}
bool solve(vector<vector<int>>& matrix) {
    N = matrix.size();
    return nQueen(matrix, 0);
    ;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    // TOP LEFT TO BOTTOM RIGHT
    private Set<Integer> ord;
    // bottom left to top right
    private Set<Integer> wack;
    private Set<Integer> rows;
    private Set<Integer> columns;
    private int[][] matrix;
    public boolean solve(int[][] matrix) {
        this.matrix = matrix;
        ord = new HashSet();
        wack = new HashSet();
        rows = new HashSet();
        columns = new HashSet();
        int count = 0;
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 1) {
                    count++;
                    rows.add(i);
                    columns.add(j);
                    wack.add(i + j);
                    ord.add(i - j);
                }
            }
        }
        return recurse(0, 0, count);
    }
    public boolean recurse(int i, int j, int count) {
        if (count == matrix.length) {
            return true;
        }
        if (j == matrix[0].length) {
            i++;
            j = 0;
        }
        if (i == matrix.length)
            return false;

        if (!rows.contains(i) && !columns.contains(j) && !wack.contains(i + j)
            && !ord.contains(i - j)) {
            rows.add(i);
            columns.add(j);
            wack.add(i + j);
            ord.add(i - j);

            if (recurse(i, j + 1, count + 1))
                return true;

            rows.remove(i);
            columns.remove(j);
            wack.remove(i + j);
            ord.remove(i - j);
        }
        return recurse(i, j + 1, count);
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, board):
        n = len(board)
        rows, cols = [False] * n, [False] * n
        diagll, diagrr = [False] * (2 * n - 1), [False] * (2 * n - 1)

        def handleBlocking(row, col, action):
            board[row][col] = rows[row] = cols[col] = action
            diagll[row + col] = diagrr[row - col + n - 1] = action

        def isSafe(row, col):
            ans = (
                board[row][col]
                + rows[row]
                + cols[col]
                + diagll[row + col]
                + diagrr[row - col + n - 1]
            )
            return ans == 0

        for i in range(n):
            for j in range(n):
                if board[i][j] == 1:
                    handleBlocking(i, j, 1)

        def nqueen(row=0):
            if row == n:
                return True
            if 1 in board[row]:
                return nqueen(row + 1)
            for col in range(n):
                if isSafe(row, col):
                    handleBlocking(row, col, 1)
                    if nqueen(row + 1):
                        return True
                    handleBlocking(row, col, 0)
            return False

        ans = nqueen()
        return ans
                    


View More Similar Problems

Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

View Solution →

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →