N Queens Puzzle - Amazon Top Interview Questions
Problem Statement :
The n queens puzzle asks to place n queens on an n×n chessboard so that no two queens are attacking each other. Given a partially filled two-dimensional integer matrix where 1 represents a queen and 0 represents an empty cell, return whether this configuration of the board can solve the puzzle. Constraints 1 ≤ n ≤ 15 Example 1 Input matrix = [ [1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0] ] Output True Explanation One solution is: [1, 0, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 0, 1] [0, 1, 0, 0, 0] [0, 0, 0, 1, 0]
Solution :
Solution in C++ :
int N;
bool canPlace(vector<vector<int>>& matrix, int row, int col) {
for (int i = 0; i < N; ++i) {
if (matrix[i][col] or matrix[row][i]) return false;
}
int x = row, y = col;
while (x >= 0 and y >= 0) {
if (matrix[x--][y--]) return false;
}
x = row, y = col;
while (x >= 0 and y < N) {
if (matrix[x--][y++]) return false;
}
x = row, y = col;
while (x < N and y >= 0) {
if (matrix[x++][y--]) return false;
}
x = row, y = col;
while (x < N and y < N) {
if (matrix[x++][y++]) return false;
}
return true;
}
bool alreadyFilled(vector<vector<int>>& matrix, int row) {
for (int j = 0; j < N; ++j) {
if (matrix[row][j]) return true;
}
return false;
}
bool nQueen(vector<vector<int>>& matrix, int row) {
if (row == N) {
return true;
}
if (alreadyFilled(matrix, row)) return nQueen(matrix, row + 1);
for (int j = 0; j < N; ++j) {
if (canPlace(matrix, row, j)) {
matrix[row][j] = 1;
if (nQueen(matrix, row + 1)) return true;
matrix[row][j] = 0;
}
}
return false;
}
bool solve(vector<vector<int>>& matrix) {
N = matrix.size();
return nQueen(matrix, 0);
;
}
Solution in Java :
import java.util.*;
class Solution {
// TOP LEFT TO BOTTOM RIGHT
private Set<Integer> ord;
// bottom left to top right
private Set<Integer> wack;
private Set<Integer> rows;
private Set<Integer> columns;
private int[][] matrix;
public boolean solve(int[][] matrix) {
this.matrix = matrix;
ord = new HashSet();
wack = new HashSet();
rows = new HashSet();
columns = new HashSet();
int count = 0;
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
if (matrix[i][j] == 1) {
count++;
rows.add(i);
columns.add(j);
wack.add(i + j);
ord.add(i - j);
}
}
}
return recurse(0, 0, count);
}
public boolean recurse(int i, int j, int count) {
if (count == matrix.length) {
return true;
}
if (j == matrix[0].length) {
i++;
j = 0;
}
if (i == matrix.length)
return false;
if (!rows.contains(i) && !columns.contains(j) && !wack.contains(i + j)
&& !ord.contains(i - j)) {
rows.add(i);
columns.add(j);
wack.add(i + j);
ord.add(i - j);
if (recurse(i, j + 1, count + 1))
return true;
rows.remove(i);
columns.remove(j);
wack.remove(i + j);
ord.remove(i - j);
}
return recurse(i, j + 1, count);
}
}
Solution in Python :
class Solution:
def solve(self, board):
n = len(board)
rows, cols = [False] * n, [False] * n
diagll, diagrr = [False] * (2 * n - 1), [False] * (2 * n - 1)
def handleBlocking(row, col, action):
board[row][col] = rows[row] = cols[col] = action
diagll[row + col] = diagrr[row - col + n - 1] = action
def isSafe(row, col):
ans = (
board[row][col]
+ rows[row]
+ cols[col]
+ diagll[row + col]
+ diagrr[row - col + n - 1]
)
return ans == 0
for i in range(n):
for j in range(n):
if board[i][j] == 1:
handleBlocking(i, j, 1)
def nqueen(row=0):
if row == n:
return True
if 1 in board[row]:
return nqueen(row + 1)
for col in range(n):
if isSafe(row, col):
handleBlocking(row, col, 1)
if nqueen(row + 1):
return True
handleBlocking(row, col, 0)
return False
ans = nqueen()
return ans
View More Similar Problems
Inserting a Node Into a Sorted Doubly Linked List
Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function
View Solution →Reverse a doubly linked list
This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.
View Solution →Tree: Preorder Traversal
Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's
View Solution →Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →