# Next Permutation From Pool - Facebook Top Interview Questions

### Problem Statement :

```You are given two strings digits and lower both representing decimal numbers.

Given that you can rearrange digits in any order, return the smallest number that's larger than lower. You can assume there is a solution.

Constraints

1 ≤ n ≤ 100,000 where n is the length of digits

1 ≤ m ≤ 100,000 where m is the length of lower

Example 1

Input

digits = "852"

lower = "100"

Output

"258"

Example 2

Input

digits = "090"

lower = "0"

Output

"9"

Explanation

We can have "009".```

### Solution :

```                        ```Solution in C++ :

string solve(string digits, string lower) {
lower = string(digits.size() - lower.size(), '0') + lower;
int c = {0};
for (auto d : digits) ++c[d];
int n = digits.size();
string ret(n, '.');
int m = 0;
while (m < n && c[lower[m]] > 0) --c[lower[m]], ret[m] = lower[m], ++m;

auto make = [&](int x) {
if (x >= lower.size()) return false;
for (int d = lower[x] + 1; d <= '9'; ++d)
if (c[d] > 0) {
ret[x++] = d;
--c[d];
for (char y = '0'; y <= '9'; ++y)
while (c[y]-- > 0) ret[x++] = y;
return true;
}
return false;
};

while (m >= 0 && !make(m)) --m, ++c[lower[m]];
int b = 0;
while (b < ret.size() - 1 && ret[b] == '0') ++b;
return ret.substr(b);
}```
```

```                        ```Solution in Java :

import java.util.*;

class Solution {
// remove prefix 0 of a string. "0005040" returns "5040"
private String removePrefix0(String str) {
for (int i = 0; i != str.length(); i++)
if (str.charAt(i) != '0')
return str.substring(i, str.length());
return "0";
}

private int[] count(String str) {
int[] res = new int;
for (int i = 0; i != str.length(); i++) res[str.charAt(i) - '0']++;
return res;
}

// given digit count, sum up the digits from 0 to 9
private int sumOfDigit0to9(int[] count) {
int sum = 0;
for (int v : count) sum += v;
return sum;
}

// given digit count, sum up the digits from 1 to 9
private int sumOfDigit1to9(int[] count) {
int sum = 0;
for (int i = 1; i != 10; i++) sum += count[i];
return sum;
}

// function to tell if we have any digit in our supply that larger than wanted digit
private boolean hasLarge(int[] supply, int want) {
for (int i = want + 1; i != 10; i++)
if (supply[i] != 0)
return true;
return false;
}

// find the last position that we can beat the lower
// aware of the non-zero digits that I must consume
private int getLastBeat(int[] raw, String lower) {
int[] supply = raw.clone();
int last = -1;
int solid = sumOfDigit1to9(supply);
for (int i = 0; i != lower.length(); i++) {
final int want = lower.charAt(i) - '0';

// if at this time the rest of supplied digit can beat this digit of lower, record it
if (hasLarge(supply, want))
last = i;

final boolean cansame;
if (want == 0) // if want 0, but I have a lot of non-zero digits, we can't be the same
cansame = (solid < lower.length() - i && supply != 0);
else // if not 0, simply find out if we can supply this digit
cansame = supply[want] != 0;

// try to be the same
if (cansame == false)
break;

// otherwise, we can greedily be the same
supply[want]--;
if (want != 0)
solid--;
}
return last;
}

private String getSolidString(int[] supply) {
StringBuilder sb = new StringBuilder();
for (int i = 1; i != 10; i++)
for (int c = supply[i]; c != 0; c--) sb.append(i);
return sb.toString();
}

public String solve(String digits, String lower) {
lower = removePrefix0(lower);
{
int[] countSupply = count(digits);
int[] countDemand = count(lower);
// nonzerosupplytotal > demandtotal
if (sumOfDigit1to9(countSupply) > sumOfDigit0to9(countDemand)) {
StringBuilder sb = new StringBuilder();
for (int i = 1; i != 10; i++)
for (int c = countSupply[i]; c != 0; c--) sb.append(i);
return sb.toString();
}
}

int[] supply = count(digits);
final int last = getLastBeat(supply, lower);
StringBuilder sb = new StringBuilder(digits.length());
if (last == -1) { // get the least non-zero as the digit, then fill 0
String solid = getSolidString(supply); // if digits == 5004, would get 45
sb.append(solid.charAt(0)); // use the first digit
for (int zeroes = lower.length() - (solid.length() - 1); zeroes != 0;
zeroes--) // fill 0
sb.append(0);
sb.append(solid.substring(1)); // use the rest digits
} else {
// otherwise, we have a position that we can beat lower

// before that position, we try to maintain the same
for (int i = 0; i != last; i++) {
int dig = lower.charAt(i) - '0';
sb.append(dig);
supply[dig]--;
}

// at that position, find a remaining digit that we can beat the target digit
for (int i = lower.charAt(last) - '0' + 1; i != 10; i++) {
if (supply[i] != 0) {
sb.append(i);
supply[i]--;
break;
}
}

// fill 0 if we have to
for (int c = lower.length() - sb.length() - sumOfDigit1to9(supply); c != 0; c--)
sb.append(0);

// put in the rest digits in order
for (int i = 1; i != 10; i++)
for (int c = supply[i]; c != 0; c--) sb.append(i);
}
return sb.toString();
}
}```
```

```                        ```Solution in Python :

class Solution:
def solve(self, digits, lower):
digitfreq = defaultdict(int)
for x in digits:
digitfreq[int(x)] += 1
lower = ("0" * added) + lower
l = []
assert self.dfs(l, digitfreq, lower, False)

l = l[::-1]
while l and l[-1] == "0":
l.pop()
l = l[::-1]
return "".join(l)

def dfs(self, l, digitfreq, lower, is_bigger):
if is_bigger:
# our current number is definitely bigger, so just append the rest in sorted order
for v in range(10):
while digitfreq[v]:
digitfreq[v] -= 1
l.append(str(v))
return True
if len(l) == len(lower):
# we actually exactly generated the desired number, which is unacceptable
return False
x = int(lower[len(l)])
if digitfreq[x]:
# try to append the next digit in `lower`
l.append(str(x))
digitfreq[x] -= 1
if self.dfs(l, digitfreq, lower, False):
return True
digitfreq[x] += 1
l.pop()
x += 1
# try to append a larger digit
while x < 10:
if digitfreq[x]:
l.append(str(x))
digitfreq[x] -= 1
assert self.dfs(l, digitfreq, lower, True)
return True
x += 1
return False```
```

## Balanced Brackets

A bracket is considered to be any one of the following characters: (, ), {, }, [, or ]. Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and (). A matching pair of brackets is not balanced if the set of bra

## Equal Stacks

ou have three stacks of cylinders where each cylinder has the same diameter, but they may vary in height. You can change the height of a stack by removing and discarding its topmost cylinder any number of times. Find the maximum possible height of the stacks such that all of the stacks are exactly the same height. This means you must remove zero or more cylinders from the top of zero or more of

## Game of Two Stacks

Alexa has two stacks of non-negative integers, stack A = [a0, a1, . . . , an-1 ] and stack B = [b0, b1, . . . , b m-1] where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game: In each move, Nick can remove one integer from the top of either stack A or stack B. Nick keeps a running sum of the integers he removes from the two stacks. Nick is disqualified f

## Largest Rectangle

Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle

## Simple Text Editor

In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,

## Poisonous Plants

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan