Next Permutation From Pool - Facebook Top Interview Questions


Problem Statement :


You are given two strings digits and lower both representing decimal numbers. 

Given that you can rearrange digits in any order, return the smallest number that's larger than lower. You can assume there is a solution.

Constraints

1 ≤ n ≤ 100,000 where n is the length of digits

1 ≤ m ≤ 100,000 where m is the length of lower

Example 1

Input

digits = "852"

lower = "100"

Output

"258"

Example 2

Input

digits = "090"

lower = "0"

Output

"9"

Explanation

We can have "009".



Solution :



title-img




                        Solution in C++ :

string solve(string digits, string lower) {
    lower = string(digits.size() - lower.size(), '0') + lower;
    int c[128] = {0};
    for (auto d : digits) ++c[d];
    int n = digits.size();
    string ret(n, '.');
    int m = 0;
    while (m < n && c[lower[m]] > 0) --c[lower[m]], ret[m] = lower[m], ++m;

    auto make = [&](int x) {
        if (x >= lower.size()) return false;
        for (int d = lower[x] + 1; d <= '9'; ++d)
            if (c[d] > 0) {
                ret[x++] = d;
                --c[d];
                for (char y = '0'; y <= '9'; ++y)
                    while (c[y]-- > 0) ret[x++] = y;
                return true;
            }
        return false;
    };

    while (m >= 0 && !make(m)) --m, ++c[lower[m]];
    int b = 0;
    while (b < ret.size() - 1 && ret[b] == '0') ++b;
    return ret.substr(b);
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    // remove prefix 0 of a string. "0005040" returns "5040"
    private String removePrefix0(String str) {
        for (int i = 0; i != str.length(); i++)
            if (str.charAt(i) != '0')
                return str.substring(i, str.length());
        return "0";
    }

    private int[] count(String str) {
        int[] res = new int[10];
        for (int i = 0; i != str.length(); i++) res[str.charAt(i) - '0']++;
        return res;
    }

    // given digit count, sum up the digits from 0 to 9
    private int sumOfDigit0to9(int[] count) {
        int sum = 0;
        for (int v : count) sum += v;
        return sum;
    }

    // given digit count, sum up the digits from 1 to 9
    private int sumOfDigit1to9(int[] count) {
        int sum = 0;
        for (int i = 1; i != 10; i++) sum += count[i];
        return sum;
    }

    // function to tell if we have any digit in our supply that larger than wanted digit
    private boolean hasLarge(int[] supply, int want) {
        for (int i = want + 1; i != 10; i++)
            if (supply[i] != 0)
                return true;
        return false;
    }

    // find the last position that we can beat the lower
    // aware of the non-zero digits that I must consume
    private int getLastBeat(int[] raw, String lower) {
        int[] supply = raw.clone();
        int last = -1;
        int solid = sumOfDigit1to9(supply);
        for (int i = 0; i != lower.length(); i++) {
            final int want = lower.charAt(i) - '0';

            // if at this time the rest of supplied digit can beat this digit of lower, record it
            if (hasLarge(supply, want))
                last = i;

            final boolean cansame;
            if (want == 0) // if want 0, but I have a lot of non-zero digits, we can't be the same
                cansame = (solid < lower.length() - i && supply[0] != 0);
            else // if not 0, simply find out if we can supply this digit
                cansame = supply[want] != 0;

            // try to be the same
            if (cansame == false)
                break;

            // otherwise, we can greedily be the same
            supply[want]--;
            if (want != 0)
                solid--;
        }
        return last;
    }

    private String getSolidString(int[] supply) {
        StringBuilder sb = new StringBuilder();
        for (int i = 1; i != 10; i++)
            for (int c = supply[i]; c != 0; c--) sb.append(i);
        return sb.toString();
    }

    public String solve(String digits, String lower) {
        lower = removePrefix0(lower);
        {
            int[] countSupply = count(digits);
            int[] countDemand = count(lower);
            // nonzerosupplytotal > demandtotal
            if (sumOfDigit1to9(countSupply) > sumOfDigit0to9(countDemand)) {
                StringBuilder sb = new StringBuilder();
                for (int i = 1; i != 10; i++)
                    for (int c = countSupply[i]; c != 0; c--) sb.append(i);
                return sb.toString();
            }
        }

        int[] supply = count(digits);
        final int last = getLastBeat(supply, lower);
        StringBuilder sb = new StringBuilder(digits.length());
        if (last == -1) { // get the least non-zero as the digit, then fill 0
            String solid = getSolidString(supply); // if digits == 5004, would get 45
            sb.append(solid.charAt(0)); // use the first digit
            for (int zeroes = lower.length() - (solid.length() - 1); zeroes != 0;
                 zeroes--) // fill 0
                sb.append(0);
            sb.append(solid.substring(1)); // use the rest digits
        } else {
            // otherwise, we have a position that we can beat lower

            // before that position, we try to maintain the same
            for (int i = 0; i != last; i++) {
                int dig = lower.charAt(i) - '0';
                sb.append(dig);
                supply[dig]--;
            }

            // at that position, find a remaining digit that we can beat the target digit
            for (int i = lower.charAt(last) - '0' + 1; i != 10; i++) {
                if (supply[i] != 0) {
                    sb.append(i);
                    supply[i]--;
                    break;
                }
            }

            // fill 0 if we have to
            for (int c = lower.length() - sb.length() - sumOfDigit1to9(supply); c != 0; c--)
                sb.append(0);

            // put in the rest digits in order
            for (int i = 1; i != 10; i++)
                for (int c = supply[i]; c != 0; c--) sb.append(i);
        }
        return sb.toString();
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, digits, lower):
        added = len(digits) - len(lower)
        digitfreq = defaultdict(int)
        for x in digits:
            digitfreq[int(x)] += 1
        if added:
            lower = ("0" * added) + lower
        l = []
        assert self.dfs(l, digitfreq, lower, False)

        # handle leading zeroes
        l = l[::-1]
        while l and l[-1] == "0":
            l.pop()
        l = l[::-1]
        return "".join(l)

    def dfs(self, l, digitfreq, lower, is_bigger):
        if is_bigger:
            # our current number is definitely bigger, so just append the rest in sorted order
            for v in range(10):
                while digitfreq[v]:
                    digitfreq[v] -= 1
                    l.append(str(v))
            return True
        if len(l) == len(lower):
            # we actually exactly generated the desired number, which is unacceptable
            return False
        x = int(lower[len(l)])
        if digitfreq[x]:
            # try to append the next digit in `lower`
            l.append(str(x))
            digitfreq[x] -= 1
            if self.dfs(l, digitfreq, lower, False):
                return True
            digitfreq[x] += 1
            l.pop()
        x += 1
        # try to append a larger digit
        while x < 10:
            if digitfreq[x]:
                l.append(str(x))
                digitfreq[x] -= 1
                assert self.dfs(l, digitfreq, lower, True)
                return True
            x += 1
        return False
                    


View More Similar Problems

Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

View Solution →

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →