# Middle Operable Deque - Amazon Top Interview Questions

### Problem Statement :

```Implement a data structure with the following methods:

void appendLeft(int val) when appends val to the left of the deque.

int popLeft() which pops the leftmost value of the deque. If it's empty, return -1.

void append(int val) when appends val to the end of the deque.

int pop() which pops the last value of the deque. If it's empty, return -1.

void appendMiddle(int val) when appends val to the middle of the deque.

int popMiddle() which pops the middle value of the deque. If it's empty, return -1.

Middle is defined to be floor(k / 2) where k is the length of the deque.

Constraints

0 ≤ n ≤ 100,000 where n is the number of calls to any method.

Example 1

Input

methods = ["constructor", "append", "appendLeft", "appendMiddle", "appendLeft", "popMiddle", "pop", "popLeft"]
arguments = [[], , , , , [], [], []]`

Output

[None, None, None, None, None, 3, 1, 0]```

### Solution :

```                        ```Solution in C++ :

class MiddleOperableDeque {
deque<int> q1, q2;

public:
MiddleOperableDeque() {
}

void appendLeft(int val) {
q1.push_front(val);
if (q1.size() > q2.size() + 1) q2.push_front(q1.back()), q1.pop_back();
}

int popLeft() {
if (q1.empty()) return -1;
int ret = q1.front();
q1.pop_front();
if (q1.size() < q2.size()) q1.push_back(q2.front()), q2.pop_front();
return ret;
}

void append(int val) {
q2.push_back(val);
if (q1.size() < q2.size()) q1.push_back(q2.front()), q2.pop_front();
}

int pop() {
if (q2.empty()) {
if (q1.empty()) return -1;
int ret = q1.back();
q1.pop_back();
return ret;
}
int ret = q2.back();
q2.pop_back();
if (q1.size() > q2.size() + 1) q2.push_front(q1.back()), q1.pop_back();
return ret;
}

void appendMiddle(int val) {
if (q1.size() == q2.size())
q1.push_back(val);
else
q2.push_front(q1.back()), q1.back() = val;
}

int popMiddle() {
if (q1.empty()) return -1;
int ret = q1.back();
q1.pop_back();
if (q1.size() < q2.size()) q1.push_back(q2.front()), q2.pop_front();
return ret;
}
};```
```

```                        ```Solution in Python :

class MiddleOperableDeque:
def __init__(self):
# Represent the queue as the concatenation of two deques.
# We will make sure the gap between the deques corresponds to the "middle".
self.left = deque()
self.right = deque()

def _rebalance(self):
# Ensure that len(self.left) == floor(n / 2) and len(self.right) == ceil(n / 2)
if len(self.left) > len(self.right):
self.right.appendleft(self.left.pop())
elif len(self.right) > len(self.left) + 1:
self.left.append(self.right.popleft())

def appendLeft(self, val):
self.left.appendleft(val)
self._rebalance()

def popLeft(self):
if self.left:
val = self.left.popleft()
elif self.right:
# Special case: When there is only one element, it's in `self.right`
val = self.right.popleft()
else:
return -1
self._rebalance()
return val

def append(self, val):
self.right.append(val)
self._rebalance()

def pop(self):
if self.right:
val = self.right.pop()
else:
# No special case - if self.right is empty then the whole queue is empty
return -1
self._rebalance()
return val

def appendMiddle(self, val):
# If the overall length is odd, tiebreak by putting the element to the left of the middle element
self.left.append(val)
self._rebalance()

def popMiddle(self):
if not self.left and not self.right:
return -1
elif len(self.left) == len(self.right):
# If the overall length is even, tiebreak by taking the element on the left
val = self.left.pop()
else:
val = self.right.popleft()
self._rebalance()
return val```
```

## Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

## Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

## Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

## Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

## Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your \$inOrder* func

## Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary