Maximize the Number of Equivalent Pairs After Swaps - Google Top Interview Questions


Problem Statement :


You are given a list of integers of the same length A and B. 

You are also given a two-dimensional list of integers C where each element is of the form [i, j] which means that you can swap A[i] and A[j] as many times as you want.

Return the maximum number of pairs where A[i] = B[i] after the swapping.

Constraints

n ≤ 100,000 where n is the length of A and B

m ≤ 100,000 where m is the length of C

Example 1

Input

A = [1, 2, 3, 4]

B = [2, 1, 4, 3]

C = [

    [0, 1],

    [2, 3]

]

Output

4

Explanation

We can swap A[0] with A[1] then A[2] with A[3].



Solution :



title-img




                        Solution in C++ :

class UnionFind {
    private:
    vector<int> parents, rank;

    public:
    UnionFind(int n) {
        parents.resize(n);
        rank.resize(n);
        for (int i = 0; i < n; i++) {
            parents[i] = i;
            rank[i] = 1;
        }
    }

    int find(int node) {
        int root = node;

        while (root != parents[root]) {
            root = parents[root];
        }

        // Path compression
        while (node != root) {
            int temp = parents[node];
            parents[node] = root;
            node = temp;
        }

        return root;
    }

    void unify(int a, int b) {
        int rootA = find(a);
        int rootB = find(b);

        if (rootA == rootB) return;

        // Union by rank
        if (rank[rootA] > rank[rootB]) {
            parents[rootB] = rootA;
        } else if (rank[rootB] > rank[rootA]) {
            parents[rootA] = rootB;
        } else {
            parents[rootB] = rootA;
            rank[rootA]++;
        }
    }

    vector<int> get_parents_array() {
        return parents;
    }
};

// Time and Space: O(N)
int solve(vector<int>& A, vector<int>& B, vector<vector<int>>& C) {
    int n = A.size();
    UnionFind union_find(n);

    for (vector<int>& edge : C) {
        union_find.unify(edge[0], edge[1]);  // Do unions to form groups
    }

    vector<int> parents = union_find.get_parents_array();
    unordered_map<int, vector<int>> grp_map;

    for (int i = 0; i < n; i++) {
        int parent = union_find.find(i);
        grp_map[parent].push_back(i);  // Map parents to list of indices in their group
    }

    int count = 0;

    for (auto& grp : grp_map) {  // For each group
        vector<int>& indices = grp.second;
        unordered_map<int, int> value_map;

        for (int idx : indices) {  // Map values found
            value_map[A[idx]]++;
        }

        for (int idx : indices) {  // For same indices check how many matched values are found
            if (--value_map[B[idx]] >= 0) {
                count++;
            }
        }
    }

    return count;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    class DisjointSet {
        int node;
        DisjointSet parent;
        public DisjointSet(int val) {
            this.node = val;
            this.parent = this;
        }
    }

    private Map<Integer, DisjointSet> map = new HashMap();
    private Map<Integer, List<Integer>> swappableMap = new HashMap();
    public int solve(int[] A, int[] B, int[][] C) {
        int count = 0;
        if (A.length == 0 || B.length == 0)
            return 0;
        for (int i = 0; i < A.length; i++) map.put(i, new DisjointSet(i));

        for (int[] arr : C) {
            int idx1 = arr[0];
            int idx2 = arr[1];
            union(idx1, idx2);
        }

        for (int i = 0; i < A.length; i++) {
            DisjointSet set = map.get(i);
            DisjointSet par = find(set);
            swappableMap.computeIfAbsent(par.node, k -> new ArrayList()).add(i);
        }

        for (int key : swappableMap.keySet()) {
            List<Integer> list = swappableMap.get(key);

            Map<Integer, Integer> freq1 = new HashMap();
            Map<Integer, Integer> freq2 = new HashMap();

            for (int i = 0; i < list.size(); i++) {
                int idx = list.get(i);
                freq1.put(A[idx], freq1.getOrDefault(A[idx], 0) + 1);
                freq2.put(B[idx], freq2.getOrDefault(B[idx], 0) + 1);
            }
            for (int num : freq1.keySet()) {
                count += (Math.min(freq1.get(num), freq2.getOrDefault(num, 0)));
            }
        }
        return count;
    }

    private void union(int idx1, int idx2) {
        DisjointSet set1 = map.get(idx1);
        DisjointSet set2 = map.get(idx2);

        DisjointSet f1 = find(set1);
        DisjointSet f2 = find(set2);

        if (f1.node == f2.node)
            return;
        f1.parent = f2;
    }

    private DisjointSet find(DisjointSet set) {
        if (set.parent == set)
            return set;
        return set.parent = find(set.parent);
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, A, B, edges):
        N = len(A)
        graph = [[] for _ in range(N)]
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)

        ans = 0
        seen = [False] * N
        for u in range(N):
            if not seen[u]:
                queue = [u]
                seen[u] = True
                for node in queue:
                    for nei in graph[node]:
                        if not seen[nei]:
                            queue.append(nei)
                            seen[nei] = True

                count = Counter(B[i] for i in queue)
                for i in queue:
                    if count[A[i]]:
                        count[A[i]] -= 1
                        ans += 1

        return ans
                    


View More Similar Problems

Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

View Solution →

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →