Largest Binary Search Subtree in Value - Amazon Top Interview Questions
Problem Statement :
Given a binary tree root, return the largest sum of a subtree that is also a binary search tree. Constraints 0 ≤ n ≤ 100,000 where n is the number of nodes in root Example 1 Input root = [1, [5, [6, null, null], [7, null, null]], [3, [2, null, null], [4, null, null]]] Output 9 Explanation The binary search tree rooted at 3 has the largest sum with 3 + 2 + 4 = 9
Solution :
Solution in C++ :
pair<pair<bool, int>, pair<int, int>> helper(Tree* root, int& res) {
if (!root) {
return {{1, 0}, {INT_MAX, INT_MIN}};
}
pair<pair<bool, int>, pair<int, int>> leftans = helper(root->left, res);
pair<pair<bool, int>, pair<int, int>> rightans = helper(root->right, res);
pair<pair<bool, int>, pair<int, int>> ans;
ans.first.first = leftans.first.first && rightans.first.first &&
root->val > leftans.second.second && root->val < rightans.second.first;
ans.first.second = leftans.first.second + rightans.first.second + root->val;
ans.second.first = min({root->val, leftans.second.first, rightans.second.first});
ans.second.second = max({root->val, leftans.second.second, rightans.second.second});
if (ans.first.first) {
res = max(res, ans.first.second);
}
return ans;
}
int solve(Tree* root) {
int res = 0;
helper(root, res);
return res;
}
Solution in Java :
import java.util.*;
/**
* public class Tree {
* int val;
* Tree left;
* Tree right;
* }
*/
class Solution {
private int maxSubtreeSum = 0;
static class Node {
int sum;
int min;
int max;
boolean isBST;
public Node(int sum, int min, int max, boolean isBST) {
this.sum = sum;
this.min = min;
this.max = max;
this.isBST = isBST;
}
}
public int solve(Tree root) {
dfs(root);
return maxSubtreeSum;
}
private Node dfs(Tree node) {
if (node.left == null && node.right == null) {
maxSubtreeSum = Math.max(maxSubtreeSum, node.val);
return new Node(node.val, node.val, node.val, true);
}
int nodeVal = node.val;
boolean isBST = true;
int sum, minval, maxval;
sum = nodeVal;
minval = nodeVal;
maxval = nodeVal;
if (node.left != null) {
Node lnode = dfs(node.left);
isBST = (isBST && lnode.isBST && (nodeVal > lnode.max));
sum += lnode.sum;
minval = Math.min(minval, lnode.min);
// maxval = Math.max(maxval, lnode.max);
}
if (node.right != null) {
Node rnode = dfs(node.right);
isBST = (isBST && rnode.isBST && nodeVal < rnode.min);
sum += rnode.sum;
maxval = Math.max(maxval, rnode.max);
// minval = Math.min(minval, rnode.min);
}
if (isBST) {
maxSubtreeSum = Math.max(maxSubtreeSum, sum);
return new Node(sum, minval, maxval, true);
}
return new Node(sum, minval, maxval, false);
}
}
Solution in Python :
class Solution:
def solve(self, root):
ans = 0
def go(root):
nonlocal ans
if not root:
return (0, 1e9, -1e9, 1)
ls, lmin, lmax, isl = go(root.left)
rs, rmin, rmax, isr = go(root.right)
if not isl or not isr or (root.val <= lmax) or (root.val >= rmin):
return (0, 0, 0, 0)
ans = max(ans, root.val + ls + rs)
return (root.val + ls + rs, min(root.val, lmin), max(root.val, rmax), 1)
go(root)
return ans
View More Similar Problems
Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →Self Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution →Array and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution →Median Updates
The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o
View Solution →Maximum Element
You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each
View Solution →