Largest Binary Search Subtree in Nodes - Amazon Top Interview Questions


Problem Statement :


Given a binary tree root, find the largest subtree (the one with the most nodes) that is a binary search tree.

Constraints

n ≤ 100,000 where n is the number of nodes in root

Example 1

Input

root = [1, [3, [2, null, null], [5, null, null]], null]

Output

[3, [2, null, null], [5, null, null]]

Explanation

The root is not a valid binary search tree, but the tree beginning at 3 is.



Solution :



title-img




                        Solution in C++ :

tuple<int, int, int, bool> solve(Tree *root, int &mx, Tree *&res) {
    // for null node
    if (!root) return {INT_MAX, INT_MIN, 0, true};

    // fetch answer for the subtrees starting at the left and the right subtree
    auto [leftMin, leftMax, leftRes, leftValid] = solve(root->left, mx, res);
    auto [rightMin, rightMax, rightRes, rightValid] = solve(root->right, mx, res);

    /*
     * check the validity of BST for the subtree at the current node.
     * resHere = 1 + leftRes + rightRes; iff validHere == true;
     * else 0
     */
    int val = root->val;
    bool validHere = leftValid && rightValid && leftMax < val && rightMin > val;
    int resHere = validHere * (1 + leftRes + rightRes);

    // if better answer found update
    if (mx < resHere) {
        mx = resHere;
        res = root;
    }

    return {min({leftMin, rightMin, val}), max({leftMax, rightMax, val}), resHere, validHere};
}

Tree *solve(Tree *root) {
    int mx = 0;
    Tree *res = nullptr;
    solve(root, mx, res);

    return res;
}
                    


                        Solution in Java :

import java.util.*;

/**
 * public class Tree {
 *   int val;
 *   Tree left;
 *   Tree right;
 * }
 */
class Solution {
    Tree ret = null;
    int biggest_size = 0;
    int size = 0;
    public Tree solve(Tree root) {
        recurse(root);
        return ret;
    }
    public void recurse(Tree root) {
        if (root == null)
            return;
        if (is_binary(root) && size > biggest_size) {
            ret = root;
            biggest_size = size;
        }
        size = 0;
        recurse(root.left);
        recurse(root.right);
    }
    public boolean is_binary(Tree root) {
        if (root == null)
            return true;
        if (root.left != null && root.left.val > root.val) {
            return false;
        }
        if (root.right != null && root.right.val < root.val) {
            return false;
        }
        size++;
        return is_binary(root.left) && is_binary(root.right);
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, root):
        numNodes = {}
        # getting the number of Nodes of each subtree
        def dfs(root):
            if not root:
                return 0
            l, r = dfs(root.left), dfs(root.right)
            numNodes[root] = 1 + l + r
            return 1 + l + r

        dfs(root)

        storeMax, retRoot = 0, None
        # validating the BST from bottom to top while tracking the maxNum nodes
        def validate(root, parent):
            nonlocal storeMax, retRoot
            if not root:
                return [True, (parent, parent)]
            resL, minMaxL = validate(root.left, root)
            resR, minMaxR = validate(root.right, root)
            # parent BST ? ==> both left and right are BST and they satisfy the range property
            resRoot = resL and resR and minMaxL[0].val <= root.val <= minMaxR[1].val
            if resRoot:
                if numNodes[root] > storeMax:
                    retRoot, storeMax = root, numNodes[root]
                return [True, (minMaxL[1], minMaxR[0])]
            # current subtree not a BST ==> from this side there will be no contribution towards the result
            return [False, ((None), (None))]

        validate(root, None)
        return retRoot
                    


View More Similar Problems

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →