Largest Permutation


Problem Statement :


You are given an unordered array of unique integers incrementing from . You can swap any two elements a limited number of times. Determine the largest lexicographical value array that can be created by executing no more than the limited number of swaps.

Example


The following arrays can be formed by swapping the  with the other elements:

[2,1,3,4]
[3,2,1,4]
[4,2,3,1]
The highest value of the four (including the original) is . If , we can swap to the highest possible value: .

Function Description

Complete the largestPermutation function in the editor below. It must return an array that represents the highest value permutation that can be formed.

largestPermutation has the following parameter(s):

int k: the maximum number of swaps
int arr[n]: an array of integers
Input Format

The first line contains two space-separated integers  and , the length of  and the maximum swaps that can be performed. The second line contains  distinct space-separated integers from  to  as  where .



Solution :



title-img


                            Solution in C :

In C :






#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int main() {

   int n,l,k,i,j=0;
    scanf("%d %d",&n,&k);
    int arr[n];
    for(i=0;i<n;i++)
        {
        scanf("%d",&arr[i]);
    }
    i=0;
    while(j<k && i<n)
        {
        if(arr[i]!=n-i)
            {
            for(l=i;l<n;l++)
                {if(arr[l]==n-i) //swap
                {
                    int tmp=arr[l];
                    arr[l]=arr[i];
                    arr[i]=tmp;
                    break;
                }
                }
            j++;
        }
        i++;
       
    }
    for(i=0;i<n;i++)
        {
        printf("%d ",arr[i]);
    }
    
    return 0;
}
                        


                        Solution in C++ :

In C++ :







#include<iostream>
using namespace std;
int main()
{
int t,n,k;
{
cin>>n>>k;
int a[n+1],pos[n+1];
for(int i=1;i<=n;i++)
{
cin>>a[i];
pos[a[i]]=i; //position of a[i] will be i
}
for(int i=1;i<=n;i++)
{
if(!k) //no more swapping can be done
break;
else
{
if(a[i]!=n-i+1)
{
k--;
int temp = a[i]; //swapping a[i] with n-i+1
a[i] = n-i+1;
a[pos[n-i+1]] = temp;
pos[temp] = pos[n-i+1]; //swapping a[i]'s and a[n-i+1]'s positions
pos[n-i+1] = i;
}
}
}
for(int i=1;i<=n;i++) //output array after swapping is done
cout<<a[i]<<" ";
}

}
                    


                        Solution in Java :

In Java :






import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

    public static void main(String[] args) {
        Scanner scc = new Scanner(System.in);
        int n = scc.nextInt();
        int k = scc.nextInt();
        int arr[] = new int[n];
        for(int i=0; i<n; i++){
            arr[i] = scc.nextInt();
        }
        
        
        for(int i=0; i<k && i<n; i++){
            int j;
            for(j=i; j<n; j++){
                if(arr[j]==n-i){
                    break;
                }
            }
            if(j!=i){
               int temp = arr[j];
               arr[j] = arr[i];
               arr[i] = temp;
            }
            else{
                k++;
            }
        }
        
        for(int i=0; i<n; i++)
            System.out.print(arr[i]+" ");
    }
}
                    


                        Solution in Python : 
                            
In  Python3 :



n, k = map(int, input().split())
p = list(map(lambda s: int(s) - 1, input().split()))

where = [-1] * n
for i, x in enumerate(p):
    where[x] = i
    
for i in range(n):
    if k == 0:
        break
    if p[i] != n - 1 - i:
        bad_pos = where[n - 1 - i]
        bad_num = p[i]
        p[i], p[bad_pos] = p[bad_pos], p[i]
        where[bad_num], where[n - 1 - i] = where[n - 1 - i], where[bad_num]
        k -= 1
    
print(' '.join(map(lambda x: str(x + 1), p)))
                    


View More Similar Problems

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →

Insert a node at a specific position in a linked list

Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e

View Solution →