KnightL on a Chessboard
Problem Statement :
KnightL is a chess piece that moves in an L shape. We define the possible moves of as any movement from some position to some satisfying either of the following: Note that and allow for the same exact set of movements. For example, the diagram below depicts the possible locations that or can move to from its current location at the center of a chessboard: Observe that for each possible movement, the Knight moves units in one direction (i.e., horizontal or vertical) and unit in the perpendicular direction. Input Format A single integer denoting . Constraints Output Format Print exactly lines of output in which each line (where ) contains space-separated integers describing the minimum number of moves must make for each respective (where ). If some cannot reach position , print -1 instead.
Solution :
Solution in C :
In C++ :
#include<bits/stdc++.h>
using namespace std;
const int BIG = 2e9;
int n, d[50][50];
void can(queue<pair<int, int>> &q, int i, int j, int dd){
if(i >= 0 && i < n && j >= 0 && j < n && d[i][j] > dd){
d[i][j] = dd;
q.push({i, j});
}
}
int bfs(int n, int a, int b){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
d[i][j] = BIG;
}
}
d[0][0] = 0;
queue<pair<int, int>> q;
q.push({0, 0});
while(!q.empty()){
pair<int, int> v = q.front();
q.pop();
int x = v.first;
int y = v.second;
int dist = d[x][y] + 1;
can(q, x + a, y + b, dist);
can(q, x + a, y - b, dist);
can(q, x - a, y + b, dist);
can(q, x - a, y - b, dist);
can(q, x + b, y + a, dist);
can(q, x + b, y - a, dist);
can(q, x - b, y + a, dist);
can(q, x - b, y - a, dist);
}
int ans = d[n - 1][n - 1];
if(ans == BIG){
return -1;
}
return ans;
}
int main(){
cin >> n;
for(int i = 1; i < n; i++){
for(int j = 1; j < n; j++){
cout << bfs(n, i, j) << " ";
}
cout << "\n";
}
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
// your code goes here
int[][] results = new int[n-1][n-1];
for(int i = 1; i < n; i++){ //decres i and j when entering
for(int j = 1; j < n; j++){
int[][] T = new int[n][n];
Queue<Tupel> q = new LinkedList<Tupel>();
q.add(new Tupel(0,0));
while(!q.isEmpty()){
Tupel t = q.remove();
if(t.x == 0 && t.y == 0){
T[0][0] = 1;
}
if(t.x-i >= 0 && t.y-j >= 0 && T[t.x-i][t.y-j] == 0){
T[t.x-i][t.y-j] = T[t.x][t.y]+1;
q.add(new Tupel(t.x-i, t.y-j));
}
if(t.x-j >= 0 && t.y-i >= 0 && T[t.x-j][t.y-i] == 0){
T[t.x-j][t.y-i] = T[t.x][t.y]+1;
q.add(new Tupel(t.x-j, t.y-i));
}
if(t.x-i >= 0 && t.y+j < n && T[t.x-i][t.y+j] == 0){
T[t.x-i][t.y+j] = T[t.x][t.y]+1;
q.add(new Tupel(t.x-i, t.y+j));
}
if(t.x-j >= 0 && t.y+i < n && T[t.x-j][t.y+i] == 0){
T[t.x-j][t.y+i] = T[t.x][t.y]+1;
q.add(new Tupel(t.x-j, t.y+i));
}
if(t.x+i < n && t.y+j < n && T[t.x+i][t.y+j] == 0){
T[t.x+i][t.y+j] = T[t.x][t.y]+1;
if(t.x+i == n-1 && t.y+j == n-1){
break;
}
q.add(new Tupel(t.x+i, t.y+j));
}
if(t.x+j < n && t.y+i < n && T[t.x+j][t.y+i] == 0){
T[t.x+j][t.y+i] = T[t.x][t.y]+1;
if(t.x+i == n-1 && t.y+j == n-1){
break;
}
q.add(new Tupel(t.x+j, t.y+i));
}
if(t.x+i < n && t.y-j >= 0 && T[t.x+i][t.y-j] == 0){
T[t.x+i][t.y-j] = T[t.x][t.y]+1;
q.add(new Tupel(t.x+i, t.y-j));
}
if(t.x+j < n && t.y-i >= 0 && T[t.x+j][t.y-i] == 0){
T[t.x+j][t.y-i] = T[t.x][t.y]+1;
q.add(new Tupel(t.x+j, t.y-i));
}
}
results[i-1][j-1] = T[n-1][n-1]-1;
}
}
for(int i = 0; i < n-1; i++){
for(int j = 0; j < n-1; j++){
System.out.print(results[i][j] + " ");
}
System.out.println();
}
}
}
class Tupel{
int x;
int y;
public Tupel(int x, int y){
this.x = x;
this.y = y;
}
}
In C :
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
int n;
int **checked;
typedef struct node{
int i;
int j;
int g;
int h;
struct node *next;
}node_t;
node_t *head = NULL;
node_t *tail = NULL;
void insert(int i, int j, int g, int h){
if(checked[i][j]==1) return;
//printf("Insert: %d %d\n",i,j);
checked[i][j] = 1;
node_t *newnode = (node_t*)malloc(sizeof(node_t));
newnode->i = i;
newnode->j = j;
newnode->g = g;
newnode->h = h;
newnode->next = NULL;
if(head==NULL){
head=newnode;
}
else{
tail->next=newnode;
}
tail=newnode;
}
int isEmpty(){
if(head==NULL){
return 1;
}
else return 0;
}
node_t *dequeue(){
node_t *ret;
ret = head;
head = head->next;
return ret;
}
void testone(int i, int j,int g){
if(i<0) return;
if(i>=n) return;
if(j<0) return;
if(j>=n) return;
insert(i,j,g,0);
}
void initchecked(){
int i,j;
for(i=0; i<n; i++){
for(j=0; j<n; j++){
checked[i][j] = 0;
}
}
}
void Astro(int a, int b){
node_t *node;
tail = NULL;
head = NULL;
initchecked();
insert(0,0,0,0);
while(!isEmpty()){
node = dequeue();
//printf("Test: %d %d\n",node->i, node->j);
if(node==NULL){
printf("-1 ");
return ;
}
else if(node->i==n-1 && node->j==n-1){
printf("%d ",node->g);
return ;
}
testone(node->i - b, node->j + a, node->g+1);
testone(node->i - a, node->j + b, node->g+1);
testone(node->i + a, node->j + b, node->g+1);
testone(node->i + b, node->j + a, node->g+1);
testone(node->i - b, node->j - a, node->g+1);
testone(node->i - a, node->j - b, node->g+1);
testone(node->i + a, node->j - b, node->g+1);
testone(node->i + b, node->j - a, node->g+1);
}
printf("-1 ");
}
int main(){
scanf("%d",&n);
checked = (int **)malloc(n*sizeof(int *));
for(int i=0; i<n; i++){
checked[i] = (int *)malloc(n*sizeof(int *));
}
for(int i=1; i<=n-1; i++){
for(int j=1; j<=n-1; j++){
Astro(i,j);
}
printf("\n");
}
return 0;
}
In Python3 :
#!/bin/python3
import sys
n = int(input().strip())
# your code goes here
A=[]
for a in range(1,n):
B=[]
for b in range(1,n):
P={(0,0)}
c=0
f=True
V=set()
while f:
c+=1
Q=set()
V=V|P
for p in P:
if (p[0]==n-1)&(p[1]==n-1):
f=False
break
if (0<=p[0]+a<n)&(0<=p[1]+b<n):
Q.add((p[0]+a,p[1]+b))
if (0<=p[0]-a<n)&(0<=p[1]-b<n):
Q.add((p[0]-a,p[1]-b))
if (0<=p[0]-a<n)&(0<=p[1]+b<n):
Q.add((p[0]-a,p[1]+b))
if (0<=p[0]+a<n)&(0<=p[1]-b<n):
Q.add((p[0]+a,p[1]-b))
if (0<=p[0]+b<n)&(0<=p[1]+a<n):
Q.add((p[0]+b,p[1]+a))
if (0<=p[0]-b<n)&(0<=p[1]-a<n):
Q.add((p[0]-b,p[1]-a))
if (0<=p[0]-b<n)&(0<=p[1]+a<n):
Q.add((p[0]-b,p[1]+a))
if (0<=p[0]+b<n)&(0<=p[1]-a<n):
Q.add((p[0]+b,p[1]-a))
P=set()
P=P|Q
P=P-V
if len(P)==0:
break
if not f:
B.append(c-1)
else:
B.append(-1)
A.append(B)
for a in A:
for b in a:
print(b,end= " ")
print("")
View More Similar Problems
Contacts
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co
View Solution →No Prefix Set
There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio
View Solution →Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →Direct Connections
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do
View Solution →Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →Kindergarten Adventures
Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti
View Solution →