Gridland Provinces
Problem Statement :
The Kingdom of Gridland contains provinces. Each province is defined as a grid where each cell in the grid represents a city. Every cell in the grid contains a single lowercase character denoting the first character of the city name corresponding to that cell. From a city with the coordinates , it is possible to move to any of the following cells in unit of time (provided that the destination cell is within the confines of the grid): A knight wants to visit all the cities in Gridland. He can start his journey in any city and immediately stops his journey after having visited each city at least once. Moreover, he always plans his journey in such a way that the total time required to complete it is minimum. After completing his tour of each province, the knight forms a string by concatenating the characters of all the cells in his path. How many distinct strings can he form in each province? Input Format The first line contains a single integer, , denoting the number of provinces. The subsequent lines describe each province over the following three lines: The first line contains an integer, , denoting the number of columns in the province. Each of the next two lines contains a string, , of length denoting the characters for the first and second row of the province. Constraints 1 <= P <= 15 1 <= N <= 600 Si E { a - z } Output Format For each province, print the number of distinct strings the knight can form on a new line.
Solution :
Solution in C :
In C++ :
#include <bits/stdc++.h>
using namespace std;
#define PB push_back
#define MP make_pair
#define LL long long
#define int LL
#define FOR(i,a,b) for(int i = (a); i <= (b); i++)
#define RE(i,n) FOR(i,1,n)
#define REP(i,n) FOR(i,0,(int)(n)-1)
#define R(i,n) REP(i,n)
#define VI vector<int>
#define PII pair<int,int>
#define LD long double
#define FI first
#define SE second
#define st FI
#define nd SE
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
template<class C> void mini(C& _a4, C _b4) { _a4 = min(_a4, _b4); }
template<class C> void maxi(C& _a4, C _b4) { _a4 = max(_a4, _b4); }
template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; }
template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
while(*sdbg!=',')cerr<<*sdbg++;cerr<<'='<<h<<','; _dbg(sdbg+1, a...);
}
template<class T> ostream& operator<<(ostream& os, vector<T> V) {
os << "["; for (auto& vv : V) os << vv << ","; os << "]";
return os;
}
#ifdef LOCAL
#define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (__VA_ARGS__)
#define cerr if(0)cout
#endif
const int MAX = 611;
int n;
string t[2];
int P = 1e9 + 9;
int pp[MAX*2];
int hp[2][MAX];
int hs[2][MAX];
int MOD = (1ll<<61) - 1;
int razy(__int128 a, __int128 b){
return (a * b) % MOD;
}
struct hh{
vector<int> h;
hh(){h.PB(0);}
void add(char z){
h.PB(h.back() + razy(z, pp[SZ(h)-1]));
h.back() %= MOD;
}
int daj(int i,int j){
return (h[2*j] - h[2*i+2] + MOD) % MOD;
}
};
void test(){
cin >> n >> t[0] >> t[1];
unordered_set<int> secik;
R(_,2){
hh z[2];
R(i,n){
int pom = i&1;
z[0].add(t[pom][i]);
z[0].add(t[!pom][i]);
z[1].add(t[!pom][i]);
z[1].add(t[pom][i]);
}
R(i,n){
R(j,2){
hp[j][i+1] = razy(hp[j][i], P) + t[j][i] + razy(t[!j][i], pp[2*i+1]);
hp[j][i+1] %= MOD;
}
R(j,2){
hs[j][i+1] = razy(hs[j][i], P) + t[j][n-i-1] + razy(t[!j][n-i-1], pp[2*i+1]);
hs[j][i+1] %= MOD;
}
}
R(i,n)R(k,2){
hs[k][n-i] = razy(hs[k][n-i], pp[2 * i]);
}
R(k,2)
secik.insert(hs[k][n]);
R(j,n)R(i,j)R(k,2){
int hash = hp[k][i+1];
hash += z[k ^ (i&1)].daj(i,j);
hash += hs[k ^ (i&1) ^ (j&1)][n-j];
secik.insert(hash%MOD);
}
reverse(ALL(t[0]));
reverse(ALL(t[1]));
}
cout << SZ(secik) << "\n";
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(11);
cerr << fixed << setprecision(6);
pp[0] = 1;
R(i,MAX*2-1)pp[i+1] = razy(pp[i], P);
int t;cin >> t;while(t--)test();
}
In Java :
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class Solution2 {
private final static Scanner scanner =
new Scanner(System.in);
private final static long mod1 = 2147483607,
f1 = 107, f2 = 101;
private final static long[] arr1 = new long[10000],
arr2 = new long[10000];
private final static Set<Long> result = new HashSet<>();
public static void main(String[] args) {
for (int i = 0; i < arr1.length; ++i) {
arr1[i] = i > 0 ? arr1[i - 1] * f1 % mod1 : 1;
arr2[i] = i > 0 ? arr2[i - 1] * f2 % mod1 : 1;
}
for (int t = scanner.nextInt(); t > 0; --t) {
result.clear();
scanner.nextInt();
char[] c1 = scanner.next().toCharArray();
char[] c2 = scanner.next().toCharArray();
for (int i = 0; i < c1.length; ++i) {
process(c1, c2, i, false);
process(c2, c1, i, false);
process(c1, c2, i, true);
process(c2, c1, i, true);
}
reverse(c1);
reverse(c2);
for (int i = 0; i < c1.length; ++i) {
process(c1, c2, i, false);
process(c2, c1, i, false);
process(c1, c2, i, true);
process(c2, c1, i, true);
}
System.out.println(result.size());
}
}
static void process(char[] s1, char[] s2, int k, boolean b) {
long p1 = 0, p2 = 0, p3 = 0, p4 = 0;
for (int i = 0; i < k; ++i) {
p1 = (p1 + s1[i] * arr1[k - 1 - i]) % mod1;
p1 = (p1 + s2[i] * arr1[k + i]) % mod1;
p3 = (p3 + s1[i] * arr2[k - 1 - i]) % mod1;
p3 = (p3 + s2[i] * arr2[k + i]) % mod1;
}
if (b) {
p1 = (p1 + s2[k] * arr1[k * 2]) % mod1;
p1 = (p1 + s1[k] * arr1[k * 2 + 1]) % mod1;
p3 = (p3 + s2[k] * arr2[k * 2]) % mod1;
p3 = (p3 + s1[k] * arr2[k * 2 + 1]) % mod1;
char[] s = s1; s1 = s2; s2 = s;
++k;
}
for (int i = k; i < s1.length; ++i) {
p2 = (p2 + s1[i] * arr1[s1.length * 2 + k - 1 - i]) % mod1;
p2 = (p2 + s2[i] * arr1[i + k]) % mod1;
p4 = (p4 + s1[i] * arr2[s1.length * 2 + k - 1 - i]) % mod1;
p4 = (p4 + s2[i] * arr2[i + k]) % mod1;
}
result.add(((p1 + p2) % mod1) * mod1 + (p3 + p4) % mod1);
for (int i = k; i < s1.length - 1; i += 2) {
p1 = (p1 + s2[i] * arr1[i * 2]) % mod1;
p1 = (p1 + s1[i] * arr1[i * 2 + 1]) % mod1;
p1 = (p1 + s1[i + 1] * arr1[i * 2 + 2]) % mod1;
p1 = (p1 + s2[i + 1] * arr1[i * 2 + 3]) % mod1;
p2 = (p2 + s2[i] * (mod1 - arr1[i * 2])) % mod1;
p2 = (p2 + s2[i+1] * (mod1 - arr1[i * 2 + 1])) % mod1;
p2 = (p2 + s1[i] * (mod1 - arr1[s1.length * 2 - 1])) % mod1;
p2 = (p2 + s1[i+1] * (mod1 - arr1[s1.length * 2 - 2])) % mod1;
p2 = (p2 * f1 * f1) % mod1;
p3 = (p3 + s2[i] * arr2[i * 2]) % mod1;
p3 = (p3 + s1[i] * arr2[i * 2 + 1]) % mod1;
p3 = (p3 + s1[i + 1] * arr2[i * 2 + 2]) % mod1;
p3 = (p3 + s2[i + 1] * arr2[i * 2 + 3]) % mod1;
p4 = (p4 + s2[i] * (mod1 - arr2[i * 2])) % mod1;
p4 = (p4 + s2[i+1] * (mod1 - arr2[i * 2 + 1])) % mod1;
p4 = (p4 + s1[i] * (mod1 - arr2[s1.length * 2 - 1])) % mod1;
p4 = (p4 + s1[i+1] * (mod1 - arr2[s1.length * 2 - 2])) % mod1;
p4 = (p4 * f2 * f2) % mod1;
result.add(((p1 + p2) % mod1) * mod1 + (p3 + p4) % mod1);
}
}
private static void reverse(char[] str) {
for (int i = str.length / 2 - 1; i >= 0; --i) {
char t = str[i];
str[i] = str[str.length - 1 - i];
str[str.length - 1 - i] = t;
}
}
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define MOD1 1000000007
#define MOD2 1000000009
#define HASH_SIZE 123455
typedef struct _node{
int x;
int y;
struct _node *next;
} node;
void solve(int i,int j);
void insert(int x,int y);
void freehash();
long long modInverse(long long a,long long mod);
char a[2][601];
int hash_count,N;
long long tr1[1200],tl1[1200],br1[1200],
bl1[1200],dr1[1200],dl1[1200],ur1[1200],
ul1[1200],mod1[1201],inmod1[1201];
long long tr2[1200],tl2[1200],br2[1200],
bl2[1200],dr2[1200],dl2[1200],ur2[1200],
ul2[1200],mod2[1201],inmod2[1201];
node *hash[HASH_SIZE]={0};
int main(){
int T,i,j;
long long t1,t2;
scanf("%d",&T);
while(T--){
hash_count=0;
scanf("%d%s%s",&N,&a[0][0],&a[1][0]);
for(i=0,t1=t2=1;i<N;i++,t1=t1*26%MOD1,t2=t2*26%MOD2)
if(i){
tl1[i]=((a[0][i]-'a')*t1+tl1[i-1])%MOD1;
bl1[i]=((a[1][i]-'a')*t1+bl1[i-1])%MOD1;
tl2[i]=((a[0][i]-'a')*t2+tl2[i-1])%MOD2;
bl2[i]=((a[1][i]-'a')*t2+bl2[i-1])%MOD2;
}
else{
tl1[i]=a[0][i]-'a';
bl1[i]=a[1][i]-'a';
tl2[i]=a[0][i]-'a';
bl2[i]=a[1][i]-'a';
}
for(i=N-1;i>=0;i--,t1=t1*26%MOD1,t2=t2*26%MOD2){
tl1[2*N-i-1]=((a[1][i]-'a')*t1+tl1[2*N-i-2])%MOD1;
bl1[2*N-i-1]=((a[0][i]-'a')*t1+bl1[2*N-i-2])%MOD1;
tl2[2*N-i-1]=((a[1][i]-'a')*t2+tl2[2*N-i-2])%MOD2;
bl2[2*N-i-1]=((a[0][i]-'a')*t2+bl2[2*N-i-2])%MOD2;
}
for(i=N-1,t1=t2=1;i>=0;i--,t1=t1*26%MOD1,t2=t2*26%MOD2)
if(i!=N-1){
tr1[N-i-1]=((a[0][i]-'a')*t1+tr1[N-i-2])%MOD1;
br1[N-i-1]=((a[1][i]-'a')*t1+br1[N-i-2])%MOD1;
tr2[N-i-1]=((a[0][i]-'a')*t2+tr2[N-i-2])%MOD2;
br2[N-i-1]=((a[1][i]-'a')*t2+br2[N-i-2])%MOD2;
}
else{
tr1[N-i-1]=a[0][i]-'a';
br1[N-i-1]=a[1][i]-'a';
tr2[N-i-1]=a[0][i]-'a';
br2[N-i-1]=a[1][i]-'a';
}
for(i=0;i<N;i++,t1=t1*26%MOD1,t2=t2*26%MOD2){
tr1[i+N]=((a[1][i]-'a')*t1+tr1[i+N-1])%MOD1;
br1[i+N]=((a[0][i]-'a')*t1+br1[i+N-1])%MOD1;
tr2[i+N]=((a[1][i]-'a')*t2+tr2[i+N-1])%MOD2;
br2[i+N]=((a[0][i]-'a')*t2+br2[i+N-1])%MOD2;
}
for(i=0,t1=t2=1;i<N;i++){
if(i%2){
ul1[2*i]=((a[0][i]-'a')*t1+ul1[2*i-1])%MOD1;
dl1[2*i]=((a[1][i]-'a')*t1+dl1[2*i-1])%MOD1;
ul2[2*i]=((a[0][i]-'a')*t2+ul2[2*i-1])%MOD2;
dl2[2*i]=((a[1][i]-'a')*t2+dl2[2*i-1])%MOD2;
}
else
if(!i){
ul1[2*i]=a[1][i]-'a';
dl1[2*i]=a[0][i]-'a';
ul2[2*i]=a[1][i]-'a';
dl2[2*i]=a[0][i]-'a';
}
else{
ul1[2*i]=((a[1][i]-'a')*t1+ul1[2*i-1])%MOD1;
dl1[2*i]=((a[0][i]-'a')*t1+dl1[2*i-1])%MOD1;
ul2[2*i]=((a[1][i]-'a')*t2+ul2[2*i-1])%MOD2;
dl2[2*i]=((a[0][i]-'a')*t2+dl2[2*i-1])%MOD2;
}
t1=t1*26%MOD1;
t2=t2*26%MOD2;
if(i%2){
ul1[2*i+1]=((a[1][i]-'a')*t1+ul1[2*i])%MOD1;
dl1[2*i+1]=((a[0][i]-'a')*t1+dl1[2*i])%MOD1;
ul2[2*i+1]=((a[1][i]-'a')*t2+ul2[2*i])%MOD2;
dl2[2*i+1]=((a[0][i]-'a')*t2+dl2[2*i])%MOD2;
}
else{
ul1[2*i+1]=((a[0][i]-'a')*t1+ul1[2*i])%MOD1;
dl1[2*i+1]=((a[1][i]-'a')*t1+dl1[2*i])%MOD1;
ul2[2*i+1]=((a[0][i]-'a')*t2+ul2[2*i])%MOD2;
dl2[2*i+1]=((a[1][i]-'a')*t2+dl2[2*i])%MOD2;
}
t1=t1*26%MOD1;
t2=t2*26%MOD2;
}
for(i=N-1,t1=t2=1;i>=0;i--)
if(i==N-1){
ur1[2*(N-1-i)]=a[1][i]-'a';
dr1[2*(N-1-i)]=a[0][i]-'a';
ur2[2*(N-1-i)]=a[1][i]-'a';
dr2[2*(N-1-i)]=a[0][i]-'a';
t1=t1*26%MOD1;
t2=t2*26%MOD2;
ur1[2*(N-1-i)+1]=((a[0][i]-'a')*t1+ur1[2*(N-1-i)])%MOD1;
dr1[2*(N-1-i)+1]=((a[1][i]-'a')*t1+dr1[2*(N-1-i)])%MOD1;
ur2[2*(N-1-i)+1]=((a[0][i]-'a')*t2+ur2[2*(N-1-i)])%MOD2;
dr2[2*(N-1-i)+1]=((a[1][i]-'a')*t2+dr2[2*(N-1-i)])%MOD2;
t1=t1*26%MOD1;
t2=t2*26%MOD2;
}
else{
if((N-i)%2==0){
ur1[2*(N-1-i)]=((a[0][i]-'a')*t1+ur1[2*(N-1-i)-1])%MOD1;
dr1[2*(N-1-i)]=((a[1][i]-'a')*t1+dr1[2*(N-1-i)-1])%MOD1;
ur2[2*(N-1-i)]=((a[0][i]-'a')*t2+ur2[2*(N-1-i)-1])%MOD2;
dr2[2*(N-1-i)]=((a[1][i]-'a')*t2+dr2[2*(N-1-i)-1])%MOD2;
}
else{
ur1[2*(N-1-i)]=((a[1][i]-'a')*t1+ur1[2*(N-1-i)-1])%MOD1;
dr1[2*(N-1-i)]=((a[0][i]-'a')*t1+dr1[2*(N-1-i)-1])%MOD1;
ur2[2*(N-1-i)]=((a[1][i]-'a')*t2+ur2[2*(N-1-i)-1])%MOD2;
dr2[2*(N-1-i)]=((a[0][i]-'a')*t2+dr2[2*(N-1-i)-1])%MOD2;
}
t1=t1*26%MOD1;
t2=t2*26%MOD2;
if((N-i)%2==0){
ur1[2*(N-1-i)+1]=((a[1][i]-'a')*t1+ur1[2*(N-1-i)])%MOD1;
dr1[2*(N-1-i)+1]=((a[0][i]-'a')*t1+dr1[2*(N-1-i)])%MOD1;
ur2[2*(N-1-i)+1]=((a[1][i]-'a')*t2+ur2[2*(N-1-i)])%MOD2;
dr2[2*(N-1-i)+1]=((a[0][i]-'a')*t2+dr2[2*(N-1-i)])%MOD2;
}
else{
ur1[2*(N-1-i)+1]=((a[0][i]-'a')*t1+ur1[2*(N-1-i)])%MOD1;
dr1[2*(N-1-i)+1]=((a[1][i]-'a')*t1+dr1[2*(N-1-i)])%MOD1;
ur2[2*(N-1-i)+1]=((a[0][i]-'a')*t2+ur2[2*(N-1-i)])%MOD2;
dr2[2*(N-1-i)+1]=((a[1][i]-'a')*t2+dr2[2*(N-1-i)])%MOD2;
}
t1=t1*26%MOD1;
t2=t2*26%MOD2;
}
for(i=0;i<=2*N;i++)
if(i){
mod1[i]=mod1[i-1]*26%MOD1;
inmod1[i]=modInverse(mod1[i],MOD1);
mod2[i]=mod2[i-1]*26%MOD2;
inmod2[i]=modInverse(mod2[i],MOD2);
}
else
mod1[i]=inmod1[i]=mod2[i]=inmod2[i]=1;
for(i=0;i<=N;i++)
for(j=i;j<=N;j++)
solve(i,j);
printf("%d\n",hash_count);
freehash();
}
return 0;
}
void solve(int i,int j){
long long t1,t2,t3,t4,t5,t6,t7,t8,t9;
long long tt1,tt2,tt3,tt4,tt5,tt6,tt7,tt8,tt9;
t1=tr1[N+i-1];
t2=br1[N+i-1];
if(i!=N){
t1=(t1-tr1[N-i-1]+MOD1)%MOD1;
t2=(t2-br1[N-i-1]+MOD1)%MOD1;
}
t1=t1*inmod1[N-i]%MOD1;
t2=t2*inmod1[N-i]%MOD1;
t3=tl1[2*N-j-1];
t4=bl1[2*N-j-1];
if(j){
t3=(t3-tl1[j-1]+MOD1)%MOD1;
t4=(t4-bl1[j-1]+MOD1)%MOD1;
}
t3=t3*inmod1[j]%MOD1;
t4=t4*inmod1[j]%MOD1;
if(!j)
t5=t6=0;
else{
t5=ul1[2*j-1];
t6=dl1[2*j-1];
if(i){
t5=(t5-ul1[2*i-1]+MOD1)%MOD1;
t6=(t6-dl1[2*i-1]+MOD1)%MOD1;
}
}
if(i==N)
t7=t8=0;
else{
t7=ur1[2*(N-i)-1];
t8=dr1[2*(N-i)-1];
if(j!=N){
t7=(t7-ur1[2*(N-j)-1]+MOD1)%MOD1;
t8=(t8-dr1[2*(N-j)-1]+MOD1)%MOD1;
}
}
tt1=tr2[N+i-1];
tt2=br2[N+i-1];
if(i!=N){
tt1=(tt1-tr2[N-i-1]+MOD2)%MOD2;
tt2=(tt2-br2[N-i-1]+MOD2)%MOD2;
}
tt1=tt1*inmod2[N-i]%MOD2;
tt2=tt2*inmod2[N-i]%MOD2;
tt3=tl2[2*N-j-1];
tt4=bl2[2*N-j-1];
if(j){
tt3=(tt3-tl2[j-1]+MOD2)%MOD2;
tt4=(tt4-bl2[j-1]+MOD2)%MOD2;
}
tt3=tt3*inmod2[j]%MOD2;
tt4=tt4*inmod2[j]%MOD2;
if(!j)
tt5=tt6=0;
else{
tt5=ul2[2*j-1];
tt6=dl2[2*j-1];
if(i){
tt5=(tt5-ul2[2*i-1]+MOD2)%MOD2;
tt6=(tt6-dl2[2*i-1]+MOD2)%MOD2;
}
}
if(i==N)
tt7=tt8=0;
else{
tt7=ur2[2*(N-i)-1];
tt8=dr2[2*(N-i)-1];
if(j!=N){
tt7=(tt7-ur2[2*(N-j)-1]+MOD2)%MOD2;
tt8=(tt8-dr2[2*(N-j)-1]+MOD2)%MOD2;
}
}
t9=t1;
if(i%2)
t9+=t6;
else
t9+=t5;
if((j-i)%2)
t9+=t3*mod1[j*2]%MOD1;
else
t9+=t4*mod1[j*2]%MOD1;
t9%=MOD1;
tt9=tt1;
if(i%2)
tt9+=tt6;
else
tt9+=tt5;
if((j-i)%2)
tt9+=tt3*mod2[j*2]%MOD2;
else
tt9+=tt4*mod2[j*2]%MOD2;
tt9%=MOD2;
insert(t9,tt9);
t9=t2;
if(i%2)
t9+=t5;
else
t9+=t6;
if((j-i)%2)
t9+=t4*mod1[j*2]%MOD1;
else
t9+=t3*mod1[j*2]%MOD1;
t9%=MOD1;
tt9=tt2;
if(i%2)
tt9+=tt5;
else
tt9+=tt6;
if((j-i)%2)
tt9+=tt4*mod2[j*2]%MOD2;
else
tt9+=tt3*mod2[j*2]%MOD2;
tt9%=MOD2;
insert(t9,tt9);
t9=t3;
if((N-j)%2)
t9+=t8;
else
t9+=t7;
if((j-i)%2)
t9+=t1*mod1[(N-i)*2]%MOD1;
else
t9+=t2*mod1[(N-i)*2]%MOD1;
t9%=MOD1;
tt9=tt3;
if((N-j)%2)
tt9+=tt8;
else
tt9+=tt7;
if((j-i)%2)
tt9+=tt1*mod2[(N-i)*2]%MOD2;
else
tt9+=tt2*mod2[(N-i)*2]%MOD2;
tt9%=MOD2;
insert(t9,tt9);
t9=t4;
if((N-j)%2)
t9+=t7;
else
t9+=t8;
if((j-i)%2)
t9+=t2*mod1[(N-i)*2]%MOD1;
else
t9+=t1*mod1[(N-i)*2]%MOD1;
t9%=MOD1;
tt9=tt4;
if((N-j)%2)
tt9+=tt7;
else
tt9+=tt8;
if((j-i)%2)
tt9+=tt2*mod2[(N-i)*2]%MOD2;
else
tt9+=tt1*mod2[(N-i)*2]%MOD2;
tt9%=MOD2;
insert(t9,tt9);
return;
}
void insert(int x,int y){
int bucket=(x+y)%HASH_SIZE;
node *t=hash[bucket];
while(t){
if(t->x==x && t->y==y)
return;
t=t->next;
}
t=(node*)malloc(sizeof(node));
t->x=x;
t->y=y;
t->next=hash[bucket];
hash[bucket]=t;
hash_count++;
return;
}
void freehash(){
int i;
node *t,*p;
for(i=0;i<HASH_SIZE;i++){
t=hash[i];
while(t){
p=t->next;
free(t);
t=p;
}
hash[i]=NULL;
}
return;
}
long long modInverse(long long a,long long mod){
long long b0 = mod, t, q;
long long x0 = 0, x1 = 1;
while (a > 1) {
q = a / mod;
t = mod; mod = a % mod; a = t;
t = x0; x0 = x1 - q * x0; x1 = t;
}
if (x1 < 0) x1 += b0;
return x1;
}
In Python3 :
class Solution:
def __init__(self):
self.size = int(input())
self.array = []
self.array.append(input().strip())
self.array.append(input().strip())
self.hash = set()
def add_to_hash(self, results):
for set_str in results:
self.hash.add(hash(set_str))
self.hash.add(hash(set_str[::-1]))
def calculate(self):
if len(set(self.array[0]+self.array[1]))==1:
return 1
results = self.get_circles(self.array[0]+self.array[1][::-1])
full_string1 = self.array[1][::-1]+self.array[0]
full_string2 = self.array[0][::-1]+self.array[1]
full_zigzags=self.get_zigzag('',1,0,+1)
self.add_to_hash(results)
results=set(full_zigzags.keys())
for i in range(1,self.size):
for zig,diverge in full_zigzags.items():
if diverge < i:
continue
j = self.size -i
if i%2 == 0:
new_str = full_string2[j:-j]+zig[i*2:]
else:
new_str = full_string1[j:-j]+zig[i*2:]
results.add(new_str)
self.add_to_hash(results)
full_zigzags=self.get_zigzag('',0,0,+1)
results=set(full_zigzags.keys())
for i in range(1,self.size):
for zig,diverge in full_zigzags.items():
if diverge < i:
continue
j = self.size -i
if i%2 == 0:
new_str = full_string1[j:-j]+zig[i*2:]
else:
new_str = full_string2[j:-j]+zig[i*2:]
results.add(new_str)
self.add_to_hash(results)
return len(self.hash)
def get_circles(self,loop):
circles = set()
circles.add(loop)
for i in range(self.size*2-1):
loop = loop[1:]+loop[0]
circles.add(loop)
return circles
def get_zigzag(self,seed,row,col,right):
output = list(seed)
steps = 0
zigzags = {}
while col >=0 and col <self.size:
output.append(self.array[row][col])
steps+=1
row = 0 if row == 1 else 1
if steps < self.size*2:
zigzags[self.add_circle_diversion(row,col,right,''.join(output))]=steps//2
output.append(self.array[row][col])
steps+=1
col+=right
zigzags[''.join(output)]=self.size
return zigzags
def add_circle_diversion(self, row, col, right, built_str):
built_str+=self.array[row][col::right]
remaining = 2*self.size-len(built_str)
if remaining == 0:
return built_str
row = 0 if row == 1 else 1
built_str+=self.array[row][::-1*right][:remaining]
return built_str
def main():
cases = int(input())
for i in range(cases):
my_object = Solution()
print(my_object.calculate())
def get_int_list(in_str):
return [int(i) for i in in_str.strip().split()]
if __name__ == "__main__":
main()
View More Similar Problems
Components in a graph
There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu
View Solution →Kundu and Tree
Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that
View Solution →Super Maximum Cost Queries
Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and
View Solution →Contacts
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co
View Solution →No Prefix Set
There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio
View Solution →Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →