Graph Weight Queries - Google Top Interview Questions


Problem Statement :


You are given two two-dimensional list of integers edges and queries.

edges represents an undirected graph and each element is in the form [x, y, w] meaning that vertices x and y are connected with edge weight w.

queries is also in the form [x, y, w] and represents the question of does there exist a path between x and y such that each edge in it have weight of at most w.

Return the number of queries that are true.

Constraints

n ≤ 100,000 where n is the length of edges

m ≤ 100,000 where m is the length of queries

Example 1

Input

edges = [

    [0, 1, 5],

    [1, 2, 6],

    [2, 3, 7],

    [0, 3, 4]

]

queries = [

    [0, 3, 5],

    [1, 0, 3]

]

Output

1


Explanation

We can go from 0 to 3 by following this path [0, 3] and the edge's weight is at most 5. There's no path from 1 to 0 where each edge weight is at most 3



Solution :



title-img




                        Solution in C++ :

const int MAXN = 100005;
const int MAXD = 17;

// begin union find
int par[MAXN];
int find(int x) {
    return par[x] == x ? x : (par[x] = find(par[x]));
}
bool merge(int x, int y) {
    x = find(x);
    y = find(y);
    if (x == y) {
        return false;
    }
    par[x] = y;
    return true;
}
// end union find

// begin structure for MST

vector<pair<int, int>> mstedges[MAXN];  // <destination vertex, weight of edge>
int ancestor[MAXN][MAXD];  // ancestor[i][d] is the node that is 2^d above i in the spanning tree
int ancestorweight[MAXN][MAXD];  // ancestorweight[i][d] is the maximum weight edge over the 2^d
                                 // edges going up from i
int depth[MAXN];                 // depth[i] is the depth of i in its spanning tree

// returns the weight of the heaviest edge of the path from a to b
int getHeaviestEdgeWeight(int a, int b) {
    assert(find(a) == find(b));
    if (depth[a] < depth[b]) {
        swap(a, b);
    }
    int ret = 0;
    for (int d = MAXD - 1; d >= 0; d--) {
        if (depth[a] - depth[b] >= (1 << d)) {
            ret = max(ret, ancestorweight[a][d]);
            a = ancestor[a][d];
        }
    }
    assert(depth[a] == depth[b]);
    for (int d = MAXD - 1; d >= 0; d--) {
        if (ancestor[a][d] != ancestor[b][d]) {
            ret = max(ret, ancestorweight[a][d]);
            ret = max(ret, ancestorweight[b][d]);
            a = ancestor[a][d];
            b = ancestor[b][d];
        }
    }
    if (a != b) {
        ret = max(ret, ancestorweight[a][0]);
        ret = max(ret, ancestorweight[b][0]);
        a = ancestor[a][0];
        b = ancestor[b][0];
    }
    return ret;
}

void initlca(int maxv) {
    for (int d = 1; d < MAXD; d++) {
        for (int i = 0; i <= maxv; i++) {
            ancestor[i][d] = ancestor[ancestor[i][d - 1]][d - 1];
            ancestorweight[i][d] =
                max(ancestorweight[i][d - 1], ancestorweight[ancestor[i][d - 1]][d - 1]);
        }
    }
}

void dfs(int curr, int par) {
    for (auto edge : mstedges[curr]) {
        if (edge.first == par) {
            continue;
        }
        depth[edge.first] = depth[curr] + 1;
        ancestor[edge.first][0] = curr;
        ancestorweight[edge.first][0] = edge.second;
        dfs(edge.first, curr);
    }
}
// end structure for MST

// sorts edges in increasing order of weight
bool edgesort(vector<int>& a, vector<int>& b) {
    return a.back() < b.back();
}

int solve(vector<vector<int>>& edges, vector<vector<int>>& queries) {
    sort(edges.begin(), edges.end(), edgesort);
    int maxv = 0;
    for (auto& out : edges) {
        maxv = max(maxv, max(out[0], out[1]));
    }
    for (int i = 0; i <= maxv; i++) {
        par[i] = i;
    }
    for (int i = 0; i <= maxv; i++) {
        mstedges[i].clear();
    }
    for (auto& edge : edges) {
        if (merge(edge[0], edge[1])) {
            mstedges[edge[0]].emplace_back(edge[1], edge[2]);
            mstedges[edge[1]].emplace_back(edge[0], edge[2]);
        }
    }
    for (int i = 0; i <= maxv; i++) {
        depth[i] = -1;
    }
    for (int i = 0; i <= maxv; i++) {
        if (depth[i] == -1) {
            depth[i] = 0;
            ancestor[i][0] = i;
            ancestor[i][0] = 0;
            dfs(i, -1);
        }
    }
    initlca(maxv);
    int ret = 0;
    for (auto& query : queries) {
        ret += find(query[0]) == find(query[1]) &&
               query[2] >= getHeaviestEdgeWeight(query[0], query[1]);
    }
    return ret;
}
                    


                        Solution in Java :

import java.util.*;

/**
 * This is a implementation class of union by rank(union by weight) with path compression.
 */
class DisjointSetUnion {
    List<Integer> disJointSet;

    public DisjointSetUnion(int n) {
        disJointSet = new ArrayList<Integer>();
        for (int i = 0; i < n; ++i) {
            disJointSet.add(-1);
        }
    }

    public void union(int firstNode, int secondNode) {
        int firstNodeParent = find(firstNode);
        int secondNodeParent = find(secondNode);
        if (firstNodeParent == secondNodeParent)
            return;
        if (Math.abs(disJointSet.get(firstNodeParent))
            >= Math.abs(disJointSet.get(secondNodeParent))) {
            disJointSet.set(firstNodeParent,
                disJointSet.get(firstNodeParent) + disJointSet.get(secondNodeParent));
            disJointSet.set(secondNodeParent, firstNodeParent);
        } else {
            disJointSet.set(secondNodeParent,
                disJointSet.get(secondNodeParent) + disJointSet.get(firstNodeParent));
            disJointSet.set(firstNodeParent, secondNodeParent);
        }
    }

    public int find(int node) {
        if (disJointSet.get(node) < 0) {
            return node;
        }
        int parent = find(disJointSet.get(node));
        disJointSet.set(node, parent);
        return parent;
    }

    public void printDisjointSet() {
        disJointSet.forEach(element -> System.out.print(element + " "));
    }
}

class Edge implements Comparable {
    private int u, v, w;

    public Edge(int u, int v, int w) {
        this.u = u;
        this.v = v;
        this.w = w;
    }

    public int getU() {
        return u;
    }

    public int getV() {
        return v;
    }

    public int getW() {
        return w;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o)
            return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Edge edge = (Edge) o;
        return u == edge.u && v == edge.v && w == edge.w;
    }

    @Override
    public int hashCode() {
        return Objects.hash(u, v, w);
    }

    @Override
    public int compareTo(Object o) {
        Edge node = (Edge) o;
        return this.w - node.getW();
    }
}

class Solution {
    public int solve(int[][] e, int[][] query) {
        int noOfVertices = Integer.MIN_VALUE;
        int n = e.length;
        int q = query.length;
        List<Edge> edges = new ArrayList<>();
        for (int i = 0; i < n; ++i) {
            int u = e[i][0];
            int v = e[i][1];
            int w = e[i][2];
            noOfVertices = Math.max(noOfVertices, Math.max(u, v));
            Edge edge = new Edge(u, v, w);
            edges.add(edge);
        }
        List<Edge> queries = new ArrayList<>();
        for (int i = 0; i < q; ++i) {
            int u = query[i][0];
            int v = query[i][1];
            int w = query[i][2];
            Edge edge = new Edge(u, v, w);
            queries.add(edge);
        }
        Collections.sort(queries);
        Collections.sort(edges);
        int edgesPosition = 0;
        int queriesPosition = 0;
        DisjointSetUnion disjointSetUnion = new DisjointSetUnion(noOfVertices + 1);
        int answer = 0;
        while (queriesPosition < queries.size()) {
            int val = queries.get(queriesPosition).getW();
            edgesPosition = eddEdgesUptillValue(disjointSetUnion, edges, edgesPosition, val);
            if (disjointSetUnion.find(queries.get(queriesPosition).getU())
                == disjointSetUnion.find(queries.get(queriesPosition).getV())) {
                ++answer;
            }
            ++queriesPosition;
        }
        return answer;
    }
    private int eddEdgesUptillValue(
        DisjointSetUnion disjointSetUnion, List<Edge> edges, int edgesPosition, int val) {
        while (edgesPosition < edges.size() && edges.get(edgesPosition).getW() <= val) {
            disjointSetUnion.union(
                edges.get(edgesPosition).getU(), edges.get(edgesPosition).getV());
            ++edgesPosition;
        }
        return edgesPosition;
    }
}
                    


                        Solution in Python : 
                            
class DSU:
    def __init__(self, N):
        self.par = list(range(N))
        self.sz = [1] * N

    def find(self, x):
        if self.par[x] != x:
            self.par[x] = self.find(self.par[x])
        return self.par[x]

    def union(self, x, y):
        xr, yr = self.find(x), self.find(y)
        if xr == yr:
            return False
        if self.sz[xr] < self.sz[yr]:
            xr, yr = yr, xr
        self.par[yr] = xr
        self.sz[xr] += self.sz[yr]
        self.sz[yr] = self.sz[xr]
        return True


class Solution:
    def solve(self, edges, queries):
        N = max(max(u, v) for u, v, w in edges) + 1
        edges.sort(key=itemgetter(2))
        queries.sort(key=itemgetter(2))

        dsu = DSU(N)
        ans = i = 0
        for u, v, w in queries:
            while i < len(edges) and edges[i][2] <= w:
                dsu.union(*edges[i][:2])
                i += 1
            if dsu.find(u) == dsu.find(v):
                ans += 1

        return ans
                    


View More Similar Problems

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →