Find Merge Point of Two Lists
Problem Statement :
This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share a common node, return that node's data value. Note: After the merge point, both lists will share the same node pointers. Example In the diagram below, the two lists converge at Node x: [List #1] a--->b--->c \ x--->y--->z--->NULL / [List #2] p--->q Function Description Complete the findMergeNode function in the editor below. findMergeNode has the following parameters: SinglyLinkedListNode pointer head1: a reference to the head of the first list SinglyLinkedListNode pointer head2: a reference to the head of the second list Returns int: the data value of the node where the lists merge Input Format Do not read any input from stdin/console. The first line contains an integer t, the number of test cases.
Solution :
Solution in C :
In C :
// Complete the findMergeNode function below.
/*
* For your reference:
*
* SinglyLinkedListNode {
* int data;
* SinglyLinkedListNode* next;
* };
*
*/
#include <math.h>
int findMergeNode(SinglyLinkedListNode *headA, SinglyLinkedListNode *headB)
{
// Complete this function
// Do not write the main method.
int countA = 0;
int countB = 0;
struct SinglyLinkedListNode *tempHeadA, *tempHeadB;
tempHeadA = headA;
tempHeadB = headB;
while(tempHeadA != NULL){
countA++;
tempHeadA = tempHeadA->next;
}
while(tempHeadB != NULL){
countB++;
tempHeadB = tempHeadB->next;
}
// printf("%d %d", countA,countB);
int biggerNodeExtraNodes = abs(countA - countB);
// printf("%d", biggerNodeExtraNodes);
while(biggerNodeExtraNodes--){
printf("33333333333");
if(countA > countB){
headA = headA->next;
} else{
headB = headB->next;
}
}
while(headA != NULL){
printf("asdfghjklpoiuytredxdcfgh");
if(headA == headB){
return headA->data;
}else{
headA = headA->next;
headB = headB->next;
}
}
return 1;
}
Solution in C++ :
In C++ :
/*
Find merge point of two linked lists
Node is defined as
struct Node
{
int data;
Node* next;
}
*/
int getCount(Node* head)
{
Node* current = head;
int count = 0;
while (current != NULL)
{
count++;
current = current->next;
}
return count;
}
int getNode(int d, Node* head1, Node* head2)
{
int i;
Node* current1 = head1;
Node* current2 = head2;
for(i = 0; i < d; i++)
{
if(current1 == NULL)
{ return -1; }
current1 = current1->next;
}
while(current1 != NULL && current2 != NULL)
{
if(current1 == current2)
return current1->data;
current1= current1->next;
current2= current2->next;
}
return -1;
}
int FindMergeNode(Node *headA, Node *headB)
{
// Complete this function
// Do not write the main method.
int c1 = getCount(headA);
int c2 = getCount(headB);
int d;
if(c1 > c2)
{
d = c1 - c2;
return getNode(d, headA, headB);
}
else
{
d = c2 - c1;
return getNode(d, headB, headA);
}
}
Solution in Java :
In Java :
/*
Insert Node at the end of a linked list
head pointer input could be NULL as well for empty list
Node is defined as
class Node {
int data;
Node next;
}
*/
int FindMergeNode(Node headA, Node headB) {
// Complete this function
// Do not write the main method.
int countA=0;
int countB=0;
Node tempA=headA;
Node tempB=headB;
while(tempA!=null)
{
countA++;
tempA=tempA.next;
}
while(tempB!=null)
{
countB++;
tempB=tempB.next;
}
int diff=0;
if(countA>countB)
diff=countA-countB;
else
diff=countB-countA;
tempA=headA;
tempB=headB;
if(countA>countB)
{
while(diff >0)
{tempA=tempA.next;
diff--;}
}
else
{while(diff >0)
{ tempB=tempB.next;
diff--;}
}
while(tempA!=null && tempB!=null)
{
tempA=tempA.next;
tempB=tempB.next;
if(tempA==tempB)
return tempA.data;
}
return 0;
}
Solution in Python :
In python3 :
"""
Find the node at which both lists merge and return the data of that node.
head could be None as well for empty list
Node is defined as
class Node(object):
def __init__(self, data=None, next_node=None):
self.data = data
self.next = next_node
"""
def FindMergeNode(a, b):
h = {}
while a != None:
h[a.data] = a.data
a = a.next
while b != None:
if b.data in h:
return h[b.data]
b = b.next
return None
View More Similar Problems
Dynamic Array
Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.
View Solution →Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →