# Divisibility

### Problem Statement :

```Two positive integers P and S  are given.
is decimal representation of integer .
Lets define .

For example, if :

For each query you will be given two integers  and  that define a substring equal to .
Divisibility of given substring is equal to number of  pairs such that:
and
is divisible by , assuming that  is divisible by any other integer.

Timelimits

Timelimits for this challenge is given here

Input Format

First line contains two integers  and  separated by a single space.  is the number of queries.
Second line contains a big integer .
Next  lines contains two integers  and  separated by a single space each - begin and end points of substring.

Constraints

2  <=   P  <=  10^9
1000  <=  S  <=  10^100000
1  <=   Q  <=   100 000
1  <=  b  <=  e  <=  N

Output Format

Output Q  lines, the i-th line of the output should contain single integer  divisibility of the i-th query substring.```

### Solution :

```                            ```Solution in C :

In    C++  :

#include <bits/stdc++.h>

#define fi first
#define se second

using namespace std;

typedef long long int Lint;
typedef pair <int,int> ii;
int N,Q,K,srt[110000],sizeLeft[110000],
sizeRight[110000],A,B,C,D=1,R[110000][35],
L[110000][35],OK[110000];
Lint num[110000],ans[110000],G[110000],
P,POW[35]; //G[x]=f( x , N )
ii query[110000];
string s;

int compare( const int &a , const int &b ){
if( query[a].fi/K != query[b].fi/K )
return query[a].fi < query[b].fi;
return query[a].se < query[b].se;
}

int compare2( const int &a , const int &b )
{ return G[a] < G[b]; }

int main(){

cin >> P >> Q;
cin >> s;
while( (P%2) == 0 ){ P/=2; A++; D*=2; }
while( (P%5) == 0 ){ P/=5; B++; D*=5; }
C=max( A , B );
N=s.size();
for( int i=0 ; i<N ; i++ ) num[i+1]=s[i]-'0';
K=sqrt( N );

Lint power=1;
for( int i=N ; i ; i-- ){
srt[i+1]=i+1;
G[i]=(G[i+1]+(power*num[i])%P)%P;
power=(power*10LL)%P;
}
POW[0]=1;
for( int i=1 ; i<=32 ; i++ ) POW[i]=(POW[i-1]*10)%D;
srt[1]=1;

sort( srt+1 , srt+2+N , compare2 );

for( int i=1,prev=-1,count=0 ; i<=N+1 ; i++ ){
if( G[srt[i]] !=prev  ) count++,prev=G[srt[i]];
G[srt[i]]=count;
}

for( int i=1 ; i<=N ; i++ ){
Lint md=0;
int j;
for( j=0 ; i-j && j<C ; j++ ){
md=(md+(POW[j]*num[i-j])%D)%D;
R[i+1][j+1]=R[i+1][j];
if( !md && G[i-j] == G[i+1] )
R[i+1][j+1]++,L[i-j][j+1]++;
}
if( j == C && !md ) OK[i+1]=1;
}

for( int i=1 ; i<=N+1 ; i++ )
for( int j=0 ; i+j<=N && j<C ; j++ )
L[i][j+1]+=L[i][j];

for( int i=1,begin,end ; i<=Q ; i++ ){
scanf(" %d %d",&begin,&end);
query[i]=ii( begin , end );
srt[i]=i;
}
sort( srt+1 , srt+1+Q , compare );

Lint sum=0;
int left=N,right=N+5,r,l;

for( int i=1,b,e ; i<=Q ; i++ ){
b=query[srt[i]].fi,e=query[srt[i]].se+1;

if( e < right ){
r=b-C-1,l=b+C;
memset( sizeRight , 0 , sizeof sizeRight );
memset( sizeLeft , 0 , sizeof sizeLeft );
left=b,right=b-1;
sum=0;
}
for( int j=right+1 ; j<=e ; j++ , r++ ){
if( r >= left ) sizeRight[G[r]]++;
if( j-left > C && OK[j] ) sum+=
sizeRight[G[j]],sizeLeft[G[j]]++;
sum+=R[j][min(j-left,C)];
}
for( int j=left-1 ; j>=b ; j-- , l-- ){
if( OK[l] && l <= e ) sizeLeft[G[l]]++;
sum+=sizeLeft[G[j]]+L[j][min(C,e-j)];
if( e-C > j ) sizeRight[G[j]]++;
}
for( int j=left ; j<b ; j++  ){
if( l < e ){
l++;
sum-=sizeLeft[G[j]]+L[j][min(C,e-j)];
if( OK[l] ) sizeLeft[G[l]]--;
}else sum-=L[j][e-j];
if( l >= e ) l=j+C+1;
if( e-C > j ) sizeRight[G[j]]--;
}
left=b; right=e;
ans[srt[i]]=sum;
}

for( int i=1 ; i<=Q ; i++ ) printf("%lld\n",ans[i]);

return 0;

}

In    C :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define HASH_SIZE 123455
typedef struct _node{
int x;
int c;
struct _node *next;
} node;
void QQ(int x,int y);
void remove_left(int X);
void remove_right(int X);
void sort_a3(int*a,int*b,int*c,int size);
void merge3(int*a,int*left_a,int*right_a,int*b,
int*left_b,int*right_b,int*c,int*left_c,int*right_c,
int left_size,int right_size);
void insert(node **hash,int x);
void removee(node **hash,int x);
int count(node **hash,int x);
node *get();
void free_node(node *x);
char S[100001];
int cl,cr,a[100001],q1[100000],q2[100000],
y[100000],idx[100000],g1[100000][30],g2[100000]={0},
g3[100000][30],x;
long long ans[100000],tans;
node *hash1[HASH_SIZE]={0},*hash2[HASH_SIZE]={0},

int main(){
int P,Q,N,P1,i,j;
long long t,t1;
for(i=0;i<200000;i++)
if(i!=200000-1)
pool[i].next=&pool[i+1];
else
pool[i].next=NULL;
scanf("%d%d%s",&P,&Q,S);
N=strlen(S);
for(i=0;i<Q;i++){
scanf("%d%d",q1+i,q2+i);
q1[i]--;
q2[i]--;
}
for(i=0,x=(int)sqrt(N);i<Q;i++){
a[i]=q1[i]/x;
y[i]=q2[i];
idx[i]=i;
}
sort_a3(a,y,idx,Q);
for(x=0,P1=1;P%2==0;){
P/=2;
P1*=2;
x++;
}
for(t=0;P%5==0;){
P/=5;
P1*=5;
t++;
}
x=(x>t)?x:t;
for(i=N-1,t=1;i>=0;i--,t=t*10%P)
if(i==N-1)
a[i]=(S[i]-'0')%P;
else
a[i]=(a[i+1]+(S[i]-'0')*t)%P;
a[N]=0;
if(!x)
for(i=0;i<N;i++)
g2[i]=1;
else{
for(i=0;i<N;i++)
for(t=0,t1=1,j=0;j<x && i-j>=0;j++,t1*=10){
t=t+(S[i-j]-'0')*t1;
if(!j)
if(t%(P1*P)==0)
g1[i][j]=1;
else
g1[i][j]=0;
else
if(t%(P1*P)==0)
g1[i][j]=g1[i][j-1]+1;
else
g1[i][j]=g1[i][j-1];
}
for(i=x-1;i<N;i++){
for(t=0,j=i-x+1;j<i+1;j++)
t=t*10+S[j]-'0';
if(t%P1==0)
g2[i]=1;
}
for(i=0;i<N;i++)
for(t=0,j=0;j<x && i+j<N;j++){
t=t*10+(S[i+j]-'0');
if(!j)
if(t%(P1*P)==0)
g3[i][j]=1;
else
g3[i][j]=0;
else
if(t%(P1*P)==0)
g3[i][j]=g3[i][j-1]+1;
else
g3[i][j]=g3[i][j-1];
}
}
for(i=cl=cr=0,tans=0;i<Q;i++){
QQ(q1[idx[i]],q2[idx[i]]);
ans[idx[i]]=tans;
}
for(i=0;i<Q;i++)
printf("%lld\n",ans[i]);
return 0;
}
void QQ(int x,int y){
while(cl<x)
remove_left(cl++);
while(cl>x)
while(cr<y+1)
while(cr>y+1)
remove_right(--cr);
return;
}
if(X>=cr)
return;
if(X+x<cr){
insert(hash1,a[X]);
if(g2[X+x])
insert(hash2,a[X+x+1]);
tans+=count(hash2,a[X]);
if(x)
tans+=g3[X][x-1];
}
else
tans+=g3[X][cr-X-1];
return;
}
if(X<cl)
return;
if(X-x>=cl){
insert(hash1,a[X-x]);
if(g2[X]){
insert(hash2,a[X+1]);
tans+=count(hash1,a[X+1]);
}
if(x)
tans+=g1[X][x-1];
}
else
tans+=g1[X][X-cl];
return;
}
void remove_left(int X){
if(X>=cr)
return;
if(X+x<cr){
removee(hash1,a[X]);
tans-=count(hash2,a[X]);
if(g2[X+x])
removee(hash2,a[X+x+1]);
if(x)
tans-=g3[X][x-1];
}
else
tans-=g3[X][cr-X-1];
return;
}
void remove_right(int X){
if(X<cl)
return;
if(X-x>=cl){
if(g2[X]){
tans-=count(hash1,a[X+1]);
removee(hash2,a[X+1]);
}
if(x)
tans-=g1[X][x-1];
removee(hash1,a[X-x]);
}
else
tans-=g1[X][X-cl];
return;
}
void sort_a3(int*a,int*b,int*c,int size){
if (size < 2)
return;
int m = (size+1)/2,i;
int *left_a,*left_b,*left_c,*right_a,*right_b,*right_c;
left_a=(int*)malloc(m*sizeof(int));
right_a=(int*)malloc((size-m)*sizeof(int));
left_b=(int*)malloc(m*sizeof(int));
right_b=(int*)malloc((size-m)*sizeof(int));
left_c=(int*)malloc(m*sizeof(int));
right_c=(int*)malloc((size-m)*sizeof(int));
for(i=0;i<m;i++){
left_a[i]=a[i];
left_b[i]=b[i];
left_c[i]=c[i];
}
for(i=0;i<size-m;i++){
right_a[i]=a[i+m];
right_b[i]=b[i+m];
right_c[i]=c[i+m];
}
sort_a3(left_a,left_b,left_c,m);
sort_a3(right_a,right_b,right_c,size-m);
merge3(a,left_a,right_a,b,left_b,right_b,c,
left_c,right_c,m,size-m);
free(left_a);
free(right_a);
free(left_b);
free(right_b);
free(left_c);
free(right_c);
return;
}
void merge3(int*a,int*left_a,int*right_a,
int*b,int*left_b,int*right_b,int*c,
int*left_c,int*right_c,int left_size,
int right_size){
int i = 0, j = 0;
while (i < left_size|| j < right_size) {
if (i == left_size) {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
} else if (j == right_size) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
} else if (left_a[i] == right_a[j]) {
if(left_b[i]<=right_b[j]){
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
}
else{
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
}
} else if (left_a[i] < right_a[j]) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
} else {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
}
}
return;
}
void insert(node **hash,int x){
node *t=hash[x%HASH_SIZE];
while(t){
if(t->x==x){
t->c++;
return;
}
t=t->next;
}
t=get();
t->x=x;
t->c=1;
t->next=hash[x%HASH_SIZE];
hash[x%HASH_SIZE]=t;
return;
}
void removee(node **hash,int x){
node *t=hash[x%HASH_SIZE],*p=NULL;
while(t){
if(t->x==x){
t->c--;
return;
}
p=t;
t=t->next;
}
return;
}
int count(node **hash,int x){
node *t=hash[x%HASH_SIZE];
while(t){
if(t->x==x)
return t->c;
t=t->next;
}
return 0;
}
node *get(){
return res;
}
void free_node(node *x){
return;
}```
```

## Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

## Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

## Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

## Is This a Binary Search Tree?

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a

## Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the

## Balanced Forest

Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a