Diagonal Difference


Problem Statement :


Given a square matrix, calculate the absolute difference between the sums of its diagonals.

For example, the square matrix arr is shown below:

1 2 3
4 5 6
9 8 9  

The left-to-right diagonal = 1+ 5 + 9 = 15.
.The right to left diagonal =  3 +5 +9 = 17 . Their absolute difference is
|15-17| = 2 .
.

Function description

Complete the diagonal difference function in the editor below.

diagonalDifference takes the following parameter:

    int arr[n][m]: an array of integers

Return

    int: the absolute diagonal difference

Input Format

The first line contains a single integer, n, the number of rows and columns in the square matrix  arr .
Each of the next n lines describes a row, arr[i] , and consists of n space-separated integers arr[i][j]

.Constraints

-100 <= a[i][j]  <= 100

Output Format

Return the absolute difference between the sums of the matrix's two diagonals as a single integer.



Solution :



title-img


                            Solution in C :

In C :


int diagonalDifference(int arr_rows, int arr_columns, int** arr) {
    int l_diagonal_sum = 0, r_diagonal_sum = 0;
    for(int i = 0; i< arr_rows;i++)
    {
        for(int j=0;j<arr_columns;j++)
        {
            if(i == j)
            {
                l_diagonal_sum += arr[i][j];
            }

            if((i+j) == (arr_columns-1))
            {
                r_diagonal_sum += arr[i][j];
            }
        }
    }

    return abs(l_diagonal_sum - r_diagonal_sum);

}




In C ++ :


#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;


int main() {  
    int N; 
    cin >> N; 
    
    int i, j; 
    
    int sumdiag1 = 0; 
    int sumdiag2 = 0; 
    for(i = 0; i < N; i++){
        for(j = 0; j< N; j++)
        {
           int no; 
           cin >> no; 
           if(i == j)
               sumdiag1 += no; 
           if(i+j == N-1)
              sumdiag2 += no; 
        }
    }
    
    cout << abs(sumdiag1 - sumdiag2);
    return 0;
}




In Java : 


import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

    public static void main(String[] args) {
        int n;
        Scanner in=new Scanner(System.in);
        n=in.nextInt();
        int a[][]=new int[n][n];
        for(int i=0;i<n;i++){
        	for(int j=0;j<n;j++){
        		a[i][j]=in.nextInt();
        	}
        }
        int pd=0,npd=0;
        for(int i=0;i<n;i++){
        	for(int j=0;j<n;j++){
        		if(j==i)
        			pd=pd+a[i][j];
        	}
        }
        for(int i=0;i<n;i++){
        	for(int j=0;j<n;j++){
        		if(i==n-j-1){
        			npd=npd+a[i][j];
        		}
        	}
        }
        int dif=npd-pd;
        dif=Math.abs(dif);
        System.out.println(dif);
    }
}




In Python3 : 


N=int(input())
grid=[]
for i in range(0,N):
    lists=[int(i) for i in input().split()]
    grid.append(lists)
count=0
sum1=0
sum2=0
j1=0
j2=N-1
while(count<N):
    sum1=sum1+grid[count][j1]
    sum2=sum2+grid[count][j2]
    count+=1
    j1+=1
    j2-=1
print(abs(sum1-sum2))
                        








View More Similar Problems

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →

Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

View Solution →