Count and Say


Problem Statement :


The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

countAndSay(1) = "1"
countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of substrings such that each substring contains exactly one unique digit. Then for each substring, say the number of digits, then say the digit. Finally, concatenate every said digit.

For example, the saying and conversion for digit string "3322251":


Given a positive integer n, return the nth term of the count-and-say sequence.

 

Example 1:

Input: n = 1
Output: "1"
Explanation: This is the base case.
Example 2:

Input: n = 4
Output: "1211"
Explanation:
countAndSay(1) = "1"
countAndSay(2) = say "1" = one 1 = "11"
countAndSay(3) = say "11" = two 1's = "21"
countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"
 

Constraints:

1 <= n <= 30



Solution :



title-img


                            Solution in C :

char* countAndSay(int n)
{
    if(n == 1)
    {
        return "1";
    }
    // get s
    char* s = countAndSay(n - 1);  // answer from previous call
    int size = strlen(s);  // size of s
    // get ans
    char* ans = (char*) malloc(4463 * sizeof(char));
    // iterate through s and add to ans
    int idx = 0;  // idx in ans
    char curr = *s;  // first char of s
    int cnt = 1;  // count of curr
    for(int i = 1; i < size; i++)
    {
        char c = *(s + i);
        if(c == curr)
        {
            cnt++;
        }
        else
        {
            *(ans + idx++) = ('0' + cnt);
            *(ans + idx++) = curr;
            curr = c;
            cnt = 1;
        }
        // printf("%s\n", ans);
    }
    *(ans + idx++) = ('0' + cnt);
    *(ans + idx++) = curr;
    *(ans + idx) = '\0';
    // ans = (char*) realloc(ans, (idx + 1) * sizeof(char));
    return ans;
}
                        


                        Solution in C++ :

class Solution {
public:
    string countAndSay(int n) {
        if(n == 1)  return "1";

        string s = countAndSay(n-1);

        int i = 0, j = 0;
        string r;

        while(i < s.size()) {
            j = i+1;

            while(j < s.size() && s[j] == s[i])
                ++j;

            string ct = to_string(j-i);
            r += ct + s[i];
            
            i = j;
        }
        return r;
    }
};
                    


                        Solution in Java :

class Solution {
    public String countAndSay(int n) {
        if(n==1)
        return "1";

        String s=countAndSay(n-1);

        int c=0;
        StringBuilder ans=new StringBuilder();

        for(int i=0;i<s.length();i++){
            c++;
            if(i==s.length()-1 || s.charAt(i)!=s.charAt(i+1)){
                ans.append(c).append(s.charAt(i));
                c=0;
            }
        }
        return ans.toString();
        
    }
}
                    


                        Solution in Python : 
                            
res = '1'
    if n == 1:
        return res
    
    for i in range(2,n+1):
        ans = []
        charPointer = res[0]
        countPointer = 0
        for char in res:
            if char == charPointer:
                countPointer += 1
            else:
                ans.append(str(countPointer))
                ans.append(charPointer)
                charPointer = char
                countPointer = 1
        ans.append(str(countPointer))
        ans.append(charPointer)
        res = "".join(ans)
    return res
                    


View More Similar Problems

Jesse and Cookies

Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with: sweetness Least sweet cookie 2nd least sweet cookie). He repeats this procedure until all the cookies in his collection have a sweetness > = K. You are given Jesse's cookies. Print t

View Solution →

Find the Running Median

The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median.

View Solution →

Minimum Average Waiting Time

Tieu owns a pizza restaurant and he manages it in his own way. While in a normal restaurant, a customer is served by following the first-come, first-served rule, Tieu simply minimizes the average waiting time of his customers. So he gets to decide who is served first, regardless of how sooner or later a person comes. Different kinds of pizzas take different amounts of time to cook. Also, once h

View Solution →

Merging Communities

People connect with each other in a social network. A connection between Person I and Person J is represented as . When two persons belonging to different communities connect, the net effect is the merger of both communities which I and J belongs to. At the beginning, there are N people representing N communities. Suppose person 1 and 2 connected and later 2 and 3 connected, then ,1 , 2 and 3 w

View Solution →

Components in a graph

There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu

View Solution →

Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

View Solution →