# Coolguy and Two Subsequences

### Problem Statement :

```Coolguy gives you a simple problem. Given a  1-indexed array, A , containing N  elements, what will ans  be after this pseudocode is implemented and executed? Print ans % ( 10^9 + 7 ).

//f(a, b) is a function that returns the minimum element in interval [a, b]

ans = 0

for a -> [1, n]
for b -> [a, n]
for c -> [b + 1, n]
for d -> [c, n]
ans = ans + min(f(a, b), f(c, d))

Input Format

The first line contains N (the size of array A).
The second line contains N  space-separated integers describing A.

Constraints

1  ≤  N ≤  2x 10^5
1  ≤  Ai ≤ 10^9
Note: A is 1-indexed (i.e.: A =  A1 , A2, A3, . . . AN-1, AN ).

Output Format

Print the integer result of ans % ( 10^9 + 7 ) .```

### Solution :

```                            ```Solution in C :

In   C++ :

#define _CRT_SECURE_NO_WARNINGS

#include <fstream>
#include <iostream>
#include <string>
#include <complex>
#include <math.h>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <stdio.h>
#include <stack>
#include <algorithm>
#include <list>
#include <ctime>
#include <memory.h>
#include <assert.h>

#define y0 sdkfaslhagaklsldk
#define y1 aasdfasdfasdf
#define j1 assdgsdgasghsf
#define tm sdfjahlfasfh
#define lr asgasgash

#define eps 1e-9
#define M_PI 3.141592653589793
#define bs 1000000007
#define bsize 512

const int N = 1000500;

const double INF = 1e18;

using namespace std;

int n;
int ar[N];

int brute()
{
int ans = 0;

for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
for (int q = j + 1; q < n; q++)
{
for (int w = q; w < n; w++)
{
int mn = 1e9;
for (int a = i; a <= j; a++)
{
mn = min(mn, ar[a]);
}
for (int a = q; a <= w; a++)
{
mn = min(mn, ar[a]);
}
ans += mn;
ans %= bs;
}
}
}
}
return ans;
}

vector<pair<int, pair<int, int> > > events;
int block[N];

set<int> ban;
long long ttl;

int get_prev(int x)
{
set<int>::iterator it;
it = ban.lower_bound(x);
--it;
return *it;
}

int get_next(int x)
{
set<int>::iterator it;
it = ban.lower_bound(x);
return *it;
}

long long TTL;

long long C(long long x)
{
return x*(x + 1) / 2 % bs;
}

void remove_segment(int l, int r)
{
TTL -= C(r - l - 1);
}

{
TTL += C(r - l - 1);
}

int smart()
{
long long ans = 0;

events.clear();

for (int i = 0; i < n; i++)
{
events.push_back(make_pair(ar[i], make_pair(1, i)));
}

sort(events.begin(), events.end());

ban.clear();
ban.insert(-1);
ban.insert(n);

TTL = C(n);
TTL %= bs;

for (int i = 0; i < events.size(); i++)
{
int ps = events[i].second.second;
int l, r;
l = get_prev(ps);
r = get_next(ps);
int span = r - l - 1;
long long val1 = TTL - C(span) + bs;
val1 %= bs;
ans += 1ll * val1*(ps - l) % bs*(r - ps) % bs*ar[ps]%bs;
ans %= bs;
//cout << ps << " " << l << " " << r << " "<<ar[ps]<<" "<<ans<<endl;

for (int Q = l + 1; Q <= ps; Q++)
{
ans += C(Q - l - 1)*(r - ps)%bs*ar[ps]%bs;
ans %= bs;
}
for (int Q = ps; Q < r; Q++)
{
ans += C(r - Q - 1)*(ps - l)%bs*ar[ps]%bs;
ans %= bs;
}

remove_segment(l, r);
ban.insert(ps);

}

return ans;
}

int main(){
//freopen("route.in","r",stdin);
//freopen("route.out","w",stdout);
//freopen("F:/in.txt", "r", stdin);
//freopen("F:/output.txt", "w", stdout);
ios_base::sync_with_stdio(0);
//cin.tie(0);

//	srand(10);

cin >> n;
for (int i = 0; i < n; i++)
{
cin >> ar[i];
//	ar[i] = rand() % 5;
}

//	cout << brute() << endl;
cout << smart() << endl;

cin.get(); cin.get();
return 0;
}

In   Java :

import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

public class CoolguyAndTwoSubsequences {
final static int constant = 1000000007;

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();

final int[] A = new int[N];
int[] l = new int[N];
int[] r = new int[N];

boolean[] mark = new boolean[N];
Integer[] index = new Integer[N];

for (int i = 0; i < N; i++) {
A[i] = scanner.nextInt();
l[i] = r[i] = i;
mark[i] = false;
index[i] = Integer.valueOf(i);
}
Arrays.sort(index, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return A[o2] - A[o1];
}
});
long res = 0;
long dp = 0;
for (int i = 0; i < N; i++) {
int ptr = index[i];
mark[ptr] = true;
int left = 0;
int right = 0;
if (ptr > 0 && mark[ptr - 1]) {
left = ptr - l[ptr - 1];
dp = (dp + constant - fun1(left)) % constant;
}
if (ptr < N - 1 && mark[ptr + 1]) {
right = r[ptr + 1] - ptr;
dp = (dp + constant - fun1(right)) % constant;
}
l[ptr + right] = ptr - left;
r[ptr - left] = ptr + right;

long c = 0;

c += (right + 1) * fun2(left) % constant;
c %= constant;

c += (left + 1) * fun2(right) % constant;
c %= constant;

c += (left + 1L) * (right + 1L) % constant * dp % constant;
c %= constant;

res += c * A[ptr] % constant;
res %= constant;
dp += fun1(left + right + 1);
dp %= constant;
}
System.out.println(res);
scanner.close();
}

private static long fun2(long p) {
return p * (p + 1) * (p + 2) / 6 % constant;
}

private static long fun1(long p) {
return p * (p + 1) / 2 % constant;
}
}

In   C   :

#include <stdio.h>
#include <stdlib.h>
#define MOD 1000000007
void sort_a2(int*a,int*b,int size);
void merge2(int*a,int*left_a,int*right_a,
int*b,int*left_b,int*right_b,
int left_size, int right_size);
int a[200000],idx[200000],a_idx[200000],
st[200000],left[200000],right[200000];
long long dp[200001];

int main(){
int N,sp,i,j;
long long sum=0,ans=0,A,B;
dp[0]=0;
for(i=1;i<=200000;i++)
dp[i]=(dp[i-1]+i*(long long)(i+1)/2)%MOD;
scanf("%d",&N);
for(i=0;i<N;i++){
scanf("%d",a+i);
idx[i]=i;
}
if(N==1){
printf("0");
return 0;
}
sort_a2(a,idx,N);
for(i=0;i<N;i++)
a_idx[idx[i]]=i;
for(i=sp=0;i<N;i++){
while(sp && a_idx[st[sp-1]]>a_idx[i])
sp--;
if(!sp)
left[i]=-1;
else
left[i]=st[sp-1];
st[sp++]=i;
}
for(i=N-1,sp=0;i>=0;i--){
while(sp && a_idx[st[sp-1]]>a_idx[i])
sp--;
if(!sp)
right[i]=N;
else
right[i]=st[sp-1];
st[sp++]=i;
}
for(i=N-1;i>=0;i--){
j=idx[i];
A=(right[j]-j)*(long long)(j-left[j])%MOD;
sum=(sum-(right[j]-j-1)*(long long)(right[j]-j)/2%MOD-(j-left[j]-1)*(long long)(j-left[j])/2%MOD+2*MOD)%MOD;
B=A*sum%MOD;
B=(B+dp[right[j]-j-1]*(j-left[j]))%MOD;
B=(B+dp[j-left[j]-1]*(right[j]-j))%MOD;
ans=(ans+B*a[i])%MOD;
sum=(sum+(right[j]-left[j]-1)*(long long)(right[j]-left[j])/2)%MOD;
}
printf("%lld",ans);
return 0;
}
void sort_a2(int*a,int*b,int size){
if (size < 2)
return;
int m = (size+1)/2,i;
int*left_a,*left_b,*right_a,*right_b;
left_a=(int*)malloc(m*sizeof(int));
right_a=(int*)malloc((size-m)*sizeof(int));
left_b=(int*)malloc(m*sizeof(int));
right_b=(int*)malloc((size-m)*sizeof(int));
for(i=0;i<m;i++){
left_a[i]=a[i];
left_b[i]=b[i];
}
for(i=0;i<size-m;i++){
right_a[i]=a[i+m];
right_b[i]=b[i+m];
}
sort_a2(left_a,left_b,m);
sort_a2(right_a,right_b,size-m);
merge2(a,left_a,right_a,b,left_b,right_b,m,size-m);
free(left_a);
free(right_a);
free(left_b);
free(right_b);
return;
}
void merge2(int*a,int*left_a,
int*right_a,int*b,int*left_b,
int*right_b,int left_size, int right_size){
int i = 0, j = 0;
while (i < left_size|| j < right_size) {
if (i == left_size) {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
j++;
} else if (j == right_size) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
i++;
} else if (left_a[i] <= right_a[j]) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
i++;
} else {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
j++;
}
}
return;
}

In   Python3  :

def smart():
left = [0] * (n + 2)
right = [0] * (n + 2)
singles = pairs = 0
ans = 0
def remove(k):
nonlocal singles, pairs
s = k * (k + 1) // 2
singles -= s
pairs -= (k+2)*(k+1)*k*(k-1)//24 + s * singles
nonlocal singles, pairs
s = k * (k + 1) // 2
pairs += (k+2)*(k+1)*k*(k-1)//24 + s * singles
singles += s
for i in sorted(range(1, n+1), key=A.__getitem__)[::-1]:
l, r = left[i-1], right[i+1]
k = l + 1 + r
right[i - l] = left[i + r] = k
oldpairs = pairs
remove(l)
remove(r)
ans += A[i] * (pairs - oldpairs)
return ans % (10**9 + 7)

n = int(input())
A = [None] + list(map(int, input().split()))
print(smart())```
```

## Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

## Tree : Top View

Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.

## Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

## Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

## Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

## Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b