Contacts


Problem Statement :


We're going to make our own Contacts application! The application must perform two types of operations:

1 . add name, where name  is a string denoting a contact name. This must store name as a new contact in the application.
find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with  and print the count on a new line.

Given n sequential add and find operations, perform each operation in order.

Input Format

The first line contains a single integer, n , denoting the number of operations to perform.
Each line i of the n subsequent lines contains an operation in one of the two forms defined above.

Constraints

1  <=  n  <=  10 ^5
1  <=  | name |  <= 21
1  <=  | partial |  <= 21

It is guaranteed that name and partial contain lowercase English letters only.
The input doesn't have any duplicate name for the add operation.
Output Format

For each find partial operation, print the number of contact names starting with partial on a new line.


Sample Input

4
add hack
add hackerrank
find hac
find hak
Sample Output

2
0



Solution :



title-img


                            Solution in C :

In C ++ :





#include <bits/stdc++.h>
using namespace std;
struct node{
    int h[26],n,f;
};
node null;
vector<node>trie;
void add(string &A){
    int i,j,p,q,act=0;
    for(i=0;i<A.size();i++){
        p=A[i]-'a';
        if(!trie[act].h[p]){
            trie[act].h[p]=trie.size();
            trie.push_back(null);
        }
        act=trie[act].h[p];
        trie[act].n++;
    }
}
int findi(string &A){
    int i,j,p,q,act=0;
    for(i=0;i<A.size();i++){
        p=A[i]-'a';
        if(!trie[act].h[p])return 0;
        act=trie[act].h[p];
    }
    return trie[act].n;
}
int main(){
    int i,j,p,q,N;
    string A,B;
    null.n=null.f=0;
    for(i=0;i<26;i++)null.h[i]=0;
    trie.push_back(null);
    cin>>N;
    for(i=0;i<N;i++){
        cin>>A>>B;
        if(A=="add")add(B);
        else cout<<findi(B)<<"\n";
    }
}








In Java :





import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;


class TrieNode{
    int count = 0;
    TrieNode[] trieNode = new TrieNode[26];
}


class Trie{
    TrieNode contacts = new TrieNode();
    
    public void add(String contact){
        
        TrieNode temp = contacts;
        temp.count++;
        
        for(char c : contact.toCharArray()){
            
            int index = c - 'a';
            if(temp.trieNode[index] != null){
                temp = temp.trieNode[index];
            }
            else{
                temp.trieNode[index] = new TrieNode();
                temp = temp.trieNode[index];
            }
            temp.count++; 
        }
        
    }
    
    public int find(String contact){
        
        TrieNode temp = contacts;
        
        for(char c : contact.toCharArray()){
            
            int index = c -'a';
            if(temp.trieNode[index]!=null){
                temp = temp.trieNode[index];
            }
            else{
                return 0;
            }
            
        }
        return temp.count;
    }
}

public class Solution {

    public static void main(String[] args) {
        /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
        int numContacts;
        Scanner in = new Scanner(System.in);
        int numOperations = in.nextInt();
        
        Trie trie = new Trie();
        
        for(int i = 0; i <= numOperations; i++){
            String op = in.nextLine();
            
            String spl[] = op.split(" ");
            
            //System.out.println("Input:"+op);
            if(spl[0].equals("add")){
                //System.out.println("Adding"+spl[1]);
                trie.add(spl[1]);
            }
            if(spl[0].equals("find")){
                //System.out.println("finding"+spl[1]);
                numContacts = trie.find(spl[1]);
                System.out.println(numContacts);
            }
        }
    }
}








In C :




#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct node
{
    bool isEOW;
    int count;
    struct node *letters[26];
} Trie;
Trie *createNode()
{
    int i;
    Trie *temp=malloc(sizeof(Trie));
    temp->isEOW=false;
    temp->count=0;
    for(i=0; i<26; i++)
    {
        temp->letters[i]=NULL;
    }
    return temp;
}
Trie *insert(Trie *root,char *name)
{
    int i;
    Trie *temp=root;
    for(i=0; name[i]!='\0'; i++)
    {
        if(root->letters[name[i]-'a']==NULL)
            root->letters[name[i]-'a']=createNode();
        root=root->letters[name[i]-'a'];
        root->count++;
    }
    root->isEOW=true;
    return temp;
}
/*int countNames(Trie *root)
{
    int i,count=0;
    if(root->isEOW)
        count++;
    for(i=0; i<26; i++)
    {
        if(root->letters[i])
            count=count+countNames(root->letters[i]);
    }
    return count;
}*/
int main()
{

    int i;
    long n;
    Trie* root=createNode();
    scanf("%ld",&n);
    char a[5],name[22];
    while(n--)
    {
        scanf("%s",a);
        scanf(" %s",name);
        if(strcmp(a,"add")==0)
            root= insert(root,name);
        else if(strcmp(a,"find")==0)
        {
            Trie *temp=root;
            for(i=0; i<strlen(name); i++)
            {
                temp=temp->letters[name[i]-'a'];
                if(!temp)
                {
                    printf("0\n");
                    break;
                }
            }
            if(i==strlen(name))
                printf("%d\n",temp->count);
        }
    }
    return 0;
}








In Python3 :




N = int(input())

trie = {}

def add_word(trie, word):
    # Base case
    if word == "": return
    
    # TODO: default dict
    if word[0] in trie:
        trie[word[0]]['count'] += 1
    else:
        trie[word[0]] = { 'count': 1 }
    add_word(trie[word[0]], word[1:])
    
def find_word(trie, word):
    if word[0] not in trie:
        return 0
    else:
        # Base case
        if len(word) == 1:
            return trie[word[0]]['count']
        else:
            return find_word(trie[word[0]], word[1:])

for i in range(N):
    line = input()
    command, word = line.split()
    if command == "add":
        add_word(trie, word)
    elif command == "find":
        print(find_word(trie, word))
    else:
        print("WTF")
                        








View More Similar Problems

Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

View Solution →

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →