Construct the Array
Problem Statement :
Your goal is to find the number of ways to construct an array such that consecutive positions contain different values. Specifically, we want to construct an array with n elements such that each element between 1 and k, inclusive. We also want the first and last elements of the array to be 1 and x. Given n, k and x, find the number of ways to construct such an array. Since the answer may be large, only find it modulo 10^9 + 7. For example, for n=4, k=3, x=2, there are 3 ways, as shown here: image Complete the function countArray which takes input n, k and x. Return the number of ways to construct the array such that consecutive elements are distinct. Constraints 3 <= n <=10^5 2 <= k <= 10^5 1 <= x <= k
Solution :
Solution in C :
In C++ :
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1000000007;
int Inv(int a)
{
int res = 1;
int p = mod - 2;
while (p) {
if (p & 1) res = ll(res) * a % mod;
p >>= 1; a = ll(a) * a % mod;
}
return res;
}
int main() {
int n;
int k;
int x;
cin >> n >> k >> x;
int res1 = 1, res0 = 0;
for (int i = 1; i < n; i++) {
int nres1 = res0;
int nres0 = (ll(res1) * (k - 1) + ll(res0) * (k - 2)) % mod;
res1 = nres1; res0 = nres0;
}
if (x == 1) printf("%d\n", res1);
else {
int res = ll(res0) * Inv(k - 1) % mod;
printf("%d\n", res);
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
static long countArray(int n, int k, int x) {
// Return the number of ways to fill in the array.
long max = 1000000007;
long[] f = new long[n + 1]; //[1,...,1]
long[] g = new long[n + 1]; //[1,...,2]
f[3] = k - 1;
g[2] = 1;
g[3] = k - 2;
for (int i = 4; i <= n; i++) {
f[i] = (k - 1) * g[i - 1] % max;
g[i] = (f[i - 1] + (k - 2) * g[i - 1]) % max;
}
return x == 1 ? f[n] : g[n];
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
int x = in.nextInt();
long answer = countArray(n, k, x);
System.out.println(answer);
in.close();
}
}
In C :
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
long int countArray(int n, int k, int x) {
// Return the number of ways to fill in the array.
int64_t MOD=1e9+7;
int64_t eq_x = 0;
int64_t neq_x = 0;
if (x == 1) {
eq_x = 1;
neq_x = 0;
} else {
eq_x = 0;
neq_x = 1;
}
for (int i = 1; i < n; i++) {
int64_t eq_x1 = neq_x;
int64_t neq_x1 = (k-1) * eq_x + (k-2) * neq_x;
eq_x = eq_x1 % MOD;
neq_x = neq_x1 % MOD;
}
return eq_x;
}
int main() {
int n;
int k;
int x;
scanf("%i %i %i", &n, &k, &x);
long int answer = countArray(n, k, x);
printf("%ld\n", answer);
return 0;
}
In Python3 :
#!/bin/python3
import sys
def countArray(n, k, x):
# Return the number of ways to fill in the array.
d, s = 1, 0
for i in range(2, n):
d, s = (k - 2) * d + s, (k - 1) * d
return d if x != 1 else s
if __name__ == "__main__":
n, k, x = input().strip().split(' ')
n, k, x = [int(n), int(k), int(x)]
answer = countArray(n, k, x)
print(answer % (10 ** 9 + 7))
View More Similar Problems
Dynamic Array
Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.
View Solution →Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →