Big Sorting


Problem Statement :


Consider an array of numeric strings where each string is a positive number with anywhere from 1 to 10^6  digits. Sort the array's elements in non-decreasing, or ascending order of their integer values and return the sorted array.

Example

Return the array ['1', '3', '150', '200'].

Function Description

Complete the bigSorting function in the editor below.

bigSorting has the following parameter(s):

string unsorted[n]: an unsorted array of integers as strings
Returns

string[n]: the array sorted in numerical order
Input Format

The first line contains an integer, n, the number of strings in unsorted.
Each of the n subsequent lines contains an integer string, unsorted[ i ].

Constraints

1  <=  n  <=  2x10^5
Each string is guaranteed to represent a positive integer.
There will be no leading zeros.
The total number of digits across all strings in  is between  and  (inclusive).



Solution :



title-img


                            Solution in C :

In   C++  :







#include<iostream>
#include<fstream>
#include<math.h>
#include<algorithm>
#include<string>
#include<map>
#include<vector>
#include<queue>
#include<stack>
#include<sstream>
#include<set>

using namespace std;

#define forn(i,n) for(int i=0;i<(int)(n); i++)
#define forsn(i,s,n) for(int i=(s);i<(int)(n); i++)
#define esta(x,v) (find((v).begin(),(v).end(),(x)) !=  (v).end())
#define index(x,v) (find((v).begin(),(v).end(),(x)) - (v).begin())
#define debug(x) cout << #x << " = "  << x << endl
#define pb push_back
#define mp make_pair

typedef long long tint;
typedef unsigned long long utint;
typedef long double ldouble;

typedef vector<int> vint;

int toNumber (string s)
{
	int Number;
	if ( ! (istringstream(s) >> Number) ) Number = 0; 
	return Number;
}

string toString (int number)
{
    ostringstream ostr;
    ostr << number;
    return  ostr.str();
}

int main (){
	int n;
	cin>>n;
	vector< pair<int, string> > v;
	forn(i,n){
		string s;
		cin>>s;
		v.pb(mp((int)s.size(), s));
	}
	sort(v.begin(), v.end());
	forn(i, n){
		cout<<v[i].second<<endl;
	}
	
}









In   Java  :







import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

public class Solution {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        String[] unsorted = new String[n];
        for (int unsorted_i = 0; unsorted_i < n; unsorted_i++) {
            unsorted[unsorted_i] = in.next();
        }

        Arrays.sort(unsorted, new Comparator<String>() {
            @Override
            public int compare(String o1, String o2) {
                if (o1.length() < o2.length()) {
                    return -1;
                }
                if (o1.length() > o2.length()) {
                    return 1;
                }
                return o1.compareTo(o2);
            }
        });

        for (String s : unsorted) {
            System.out.println(s);
        }
    }
}








In   C  :







#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>

int cmp(const void *p, const void *q)
{
    char* s1 = *(char**)p;
    char* s2 = *(char**)q;
    int s1l=strlen(s1);
    int s2l=strlen(s2);
    if(s1l>s2l)
    	return 1;
    if(s2l>s1l)
    	return -1;
    int i,flag=0;
    for(i=0;i<s1l;i++)
    {
    	if(s1[i]==s2[i])
    		continue;
    	else
    	{
    		flag=1;
    		break;
    	}
    }
    if(flag)
    {
    	return s1[i]-s2[i];
    }
    return 0;
}

int main(){
    int n,i,tl;
    scanf("%d\n",&n);
    char* str[n];
    char temp[1000001];
    for(i=0;i<n;i++)
    {
        scanf("%s",temp);
        tl=strlen(temp);
        str[i]=malloc(sizeof(char)*(tl+1));
    	strcpy(str[i],temp);
    }
    qsort((void*)str,n,sizeof(str[0]),cmp);
    for(i=0;i<n;i++)
        printf("%s\n",str[i]);
    return 0;
}









In  Python3 :







import sys


n = int(input().strip())
unsorted = []
unsorted_i = 0
for unsorted_i in range(n):
   unsorted_t = str(input().strip())
   unsorted.append(unsorted_t)

unsorted.sort(key = lambda x : int(x))
for u in unsorted:
    print(u)
                        








View More Similar Problems

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →

Insert a node at a specific position in a linked list

Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e

View Solution →