Balanced Forest
Problem Statement :
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to allow creation of a balanced forest. If it's not possible to create a balanced forest, return -1. For example, you are given node values c = [15,12,8,14,13] and edges = [ [1,2], [1, 3], [1, 4]. [4, 5] ]. It is the following tree: The blue node is root, the first number in a node is node number and the second is its value. Cuts can be made between nodes 1 and 3 and nodes 1 and 4 to have three trees with sums 27, 27 and 8. Adding a new node w of c[w] = 19 to the third tree completes the solution. Function Description Complete the balancedForest function in the editor below. It must return an integer representing the minimum value of that can be added to allow creation of a balanced forest, or -1 if it is not possible. balancedForest has the following parameter(s): c: an array of integers, the data values for each node edges: an array of 2 element arrays, the node pairs per edge
Solution :
Solution in C :
In C ++ :
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <cstdlib>
#include <ctime>
#include <deque>
#include <unordered_set>
using namespace std;
int q;
map <long long, int> Map1, Map2;
long long ctot;
int c[110000];
vector <int> ve[110000];
long long ans;
int n;
long long sum[1100000];
void dfs1(int x, int f) {
sum[x] = c[x];
for (int i = 0; i < (int) ve[x].size(); i++)
if (ve[x][i] != f) {
dfs1(ve[x][i], x);
sum[x] += sum[ve[x][i]];
}
Map1[sum[x]] += 1;
}
void test(long long x) {
long long y = ctot - 2 * x;
if (y > 0 && y <= x)
ans = min(ans, x - y);
}
void dfs2(int x, int f) {
if (Map2[2 * sum[x]])
test(sum[x]);
if (Map2[ctot - sum[x]])
test(sum[x]);
if ((ctot - sum[x]) % 2 == 0 && Map2[ctot - (ctot - sum[x]) / 2])
test((ctot - sum[x]) / 2);
Map2[sum[x]] += 1;
if (Map1[sum[x]] > Map2[sum[x]])
test(sum[x]);
if (ctot - 2 * sum[x] >= sum[x] && Map1[ctot - 2 * sum[x]] > Map2[ctot - 2 * sum[x]])
test(sum[x]);
if ((ctot - sum[x]) % 2 == 0 && (ctot - sum[x]) / 2 >= sum[x] && Map1[(ctot - sum[x]) / 2] > Map2[(ctot - sum[x]) / 2])
test((ctot - sum[x]) / 2);
if (sum[x] * 2 == ctot)
ans = min(ans, sum[x]);
for (int i = 0; i < (int) ve[x].size(); i++)
if (ve[x][i] != f) {
dfs2(ve[x][i], x);
}
Map2[sum[x]] -= 1;
}
int main() {
scanf("%d", &q);
while (q--) {
Map1.clear();
Map2.clear();
ans = 1e18;
scanf("%d", &n);
ctot = 0;
for (int i = 1; i <= n; i++) {
scanf("%d", &c[i]);
ctot += c[i];
}
for (int i = 1; i <= n; i++)
ve[i].clear();
for (int i = 1; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
ve[x].push_back(y);
ve[y].push_back(x);
}
dfs1(1, 0);
dfs2(1, 0);
if (ans == 1e18)
printf("-1\n");
else
printf("%lld\n", ans);
}
}
In Java :
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Comparator;
import java.util.InputMismatchException;
public class E {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
for(int T = ni();T > 0;T--){
int n = ni();
int[] a = na(n);
int[] from = new int[n - 1];
int[] to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
from[i] = ni() - 1;
to[i] = ni() - 1;
}
int[][] g = packU(n, from, to);
int[][] pars = parents3(g, 0);
int[] par = pars[0], ord = pars[1], dep = pars[2];
int[][] rs = makeRights(g, par, 0);
int[] iord = rs[1], right = rs[2];
int[][] spar = logstepParents(par);
long[] des = new long[n];
for(int i = n-1;i >= 0;i--){
int cur = ord[i];
des[cur] += a[cur];
if(i > 0)des[par[cur]] += des[cur];
}
long W = des[0];
long ret = Long.MAX_VALUE;
// t=u
{
long[] dd = Arrays.copyOf(des, n);
Arrays.sort(dd);
for(int i = 0;i < n-1;i++){
if(dd[i] == dd[i+1] && W-2*dd[i] <= dd[i] && W-2*dd[i] >= 0){
ret = Math.min(ret, dd[i]-(W-2*dd[i]));
}
}
}
// s=t
{
long[][] poss = new long[n][];
for(int i = 0;i < n;i++){
poss[i] = new long[]{des[i], iord[i]};
}
Arrays.sort(poss, new Comparator<long[]>() {
public int compare(long[] a, long[] b) {
if(a[0] != b[0])return Long.compare(a[0], b[0]);
return Long.compare(a[1], b[1]);
}
});
long[] posv = new long[n];
for(int i = 0;i < n;i++)posv[i] = poss[i][0];
for(int i = 0;i < n;i++){
long t = des[i];
long u = W-2L*t;
if(u >= 0 && t >= u){
int lb = lowerBound(posv, u);
int ub = lowerBound(posv, u+1);
if(lb < ub){
if((int)poss[lb][1] < iord[i]){
ret = Math.min(ret, t-u);
}
if((int)poss[ub-1][1] > right[iord[i]]){
ret = Math.min(ret, t-u);
}
}
}
}
}
// ireko
// t=u
{
for(int i = 0;i < n;i++){
long u = des[i];
long s = W-u*2;
if(s >= 0 && s <= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= 2*u){
cur = anc;
}
}
if(des[cur] == 2*u){
ret = Math.min(ret, u-s);
}
}
}
}
// s=u
{
for(int i = 0;i < n;i++){
long u = des[i];
long t = W-u*2;
if(t >= 0 && t <= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= t+u){
cur = anc;
}
}
if(des[cur] == t+u){
ret = Math.min(ret, u-t);
}
}
}
}
// s=t
{
for(int i = 0;i < n;i++){
long u = des[i];
if((W-u)%2 != 0)continue;
long t = (W-u)/2;
if(t >= 0 && t >= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= t+u){
cur = anc;
}
}
if(des[cur] == t+u){
ret = Math.min(ret, t-u);
}
}
}
}
if(ret == Long.MAX_VALUE){
out.println(-1);
}else{
out.println(ret);
}
}
}
public static int lowerBound(long[] a, long v)
{
int low = -1, high = a.length;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] >= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static int[] sortByPreorder(int[][] g, int root){
int n = g.length;
int[] stack = new int[n];
int[] ord = new int[n];
BitSet ved = new BitSet();
stack[0] = root;
int p = 1;
int r = 0;
ved.set(root);
while(p > 0){
int cur = stack[p-1];
ord[r++] = cur;
p--;
for(int e : g[cur]){
if(!ved.get(e)){
stack[p++] = e;
ved.set(e);
}
}
}
return ord;
}
public static int[][] makeRights(int[][] g, int[] par, int root)
{
int n = g.length;
int[] ord = sortByPreorder(g, root);
int[] iord = new int[n];
for(int i = 0;i < n;i++)iord[ord[i]] = i;
int[] right = new int[n];
for(int i = n-1;i >= 0;i--){
int v = i;
for(int e : g[ord[i]]){
if(e != par[ord[i]]){
v = Math.max(v, right[iord[e]]);
}
}
right[i] = v;
}
return new int[][]{ord, iord, right};
}
public static int lca2(int a, int b, int[][] spar, int[] depth) {
if (depth[a] < depth[b]) {
b = ancestor(b, depth[b] - depth[a], spar);
} else if (depth[a] > depth[b]) {
a = ancestor(a, depth[a] - depth[b], spar);
}
if (a == b)
return a;
int sa = a, sb = b;
for (int low = 0, high = depth[a], t = Integer.highestOneBit(high), k = Integer
.numberOfTrailingZeros(t); t > 0; t >>>= 1, k--) {
if ((low ^ high) >= t) {
if (spar[k][sa] != spar[k][sb]) {
low |= t;
sa = spar[k][sa];
sb = spar[k][sb];
} else {
high = low | t - 1;
}
}
}
return spar[0][sa];
}
protected static int ancestor(int a, int m, int[][] spar) {
for (int i = 0; m > 0 && a != -1; m >>>= 1, i++) {
if ((m & 1) == 1)
a = spar[i][a];
}
return a;
}
public static int[][] logstepParents(int[] par) {
int n = par.length;
int m = Integer.numberOfTrailingZeros(Integer.highestOneBit(n - 1)) + 1;
int[][] pars = new int[m][n];
pars[0] = par;
for (int j = 1; j < m; j++) {
for (int i = 0; i < n; i++) {
pars[j][i] = pars[j - 1][i] == -1 ? -1 : pars[j - 1][pars[j - 1][i]];
}
}
return pars;
}
public static int[][] parents3(int[][] g, int root) {
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] depth = new int[n];
depth[0] = 0;
int[] q = new int[n];
q[0] = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][] { par, q, depth };
}
static int[][] packU(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new E().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o)
{ System.out.println(Arrays.deepToString(o)); }
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define HASH_SIZE 123455
typedef struct _lnode{
int x;
int w;
struct _lnode *next;
} lnode;
typedef struct _node{
long long x;
int c;
long long ans;
struct _node *next;
} node;
void clean_table();
void insert_edge(int x,int y,int w);
void dfs0(int x,int y);
void dfs1(int x,int y);
void insert(long long x,long long ans);
void removee(long long x,long long ans);
void search(long long x);
void freehash();
int a[50000];
long long sub[50000],min,sum;
lnode *table[50000]={0};
node *hash[HASH_SIZE]={0};
int main(){
int T,n,x,y,i;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(i=sum=0;i<n;i++){
scanf("%d",a+i);
sum+=a[i];
}
for(i=0;i<n-1;i++){
scanf("%d%d",&x,&y);
insert_edge(x-1,y-1,1);
}
dfs0(0,-1);
min=-1;
dfs1(0,-1);
printf("%lld\n",min);
clean_table();
freehash();
}
return 0;
}
void clean_table(){
int i;
lnode *p,*pp;
for(i=0;i<50000;i++)
if(table[i]){
p=table[i];
while(p){
pp=p->next;
free(p);
p=pp;
}
table[i]=NULL;
}
return;
}
void insert_edge(int x,int y,int w){
lnode *t=malloc(sizeof(lnode));
t->x=y;
t->w=w;
t->next=table[x];
table[x]=t;
t=malloc(sizeof(lnode));
t->x=x;
t->w=w;
t->next=table[y];
table[y]=t;
return;
}
void dfs0(int x,int y){
lnode *p;
sub[x]=a[x];
for(p=table[x];p;p=p->next)
if(p->x!=y){
dfs0(p->x,x);
sub[x]+=sub[p->x];
}
return;
}
void dfs1(int x,int y){
lnode *p;
long long down,up;
search(sub[x]);
down=sub[x];
up=sum-sub[x];
if(down==up && min==-1)
min=down;
if(down%2==0 && down/2*3>=sum)
insert(down/2,down/2*3-sum);
if(up<down && up*3>=sum){
insert(up,up*3-sum);
insert(down-up,up*3-sum);
}
for(p=table[x];p;p=p->next)
if(p->x!=y)
dfs1(p->x,x);
if(down%2==0 && down/2*3>=sum)
removee(down/2,down/2*3-sum);
if(up<down && up*3>=sum){
removee(up,up*3-sum);
removee(down-up,up*3-sum);
}
if(up%2==0 && up/2*3>=sum)
insert(up/2,up/2*3-sum);
if(down<up && down*3>=sum){
insert(down,down*3-sum);
insert(up-down,down*3-sum);
}
return;
}
void insert(long long x,long long ans){
int bucket=x%HASH_SIZE;
node *t=hash[bucket];
while(t){
if(t->x==x && t->ans==ans){
t->c++;
return;
}
t=t->next;
}
t=(node*)malloc(sizeof(node));
t->x=x;
t->ans=ans;
t->c=1;
t->next=hash[bucket];
hash[bucket]=t;
return;
}
void removee(long long x,long long ans){
int bucket=x%HASH_SIZE;
node *t=hash[bucket],*p=NULL;
while(t){
if(t->x==x && t->ans==ans){
t->c--;
if(!t->c){
if(!p){
hash[bucket]=t->next;
free(t);
}
else{
p->next=t->next;
free(t);
}
}
return;
}
p=t;
t=t->next;
}
return;
}
void search(long long x){
int bucket=x%HASH_SIZE;
node *t=hash[bucket];
while(t){
if(t->x==x)
if(min==-1 || t->ans<min)
min=t->ans;
t=t->next;
}
return;
}
void freehash(){
int i;
node *t,*p;
for(i=0;i<HASH_SIZE;i++){
t=hash[i];
while(t){
p=t->next;
free(t);
t=p;
}
hash[i]=NULL;
}
return;
}
In python3 :
from random import randrange
import sys
sys.setrecursionlimit(10**5)
def r():
return list(map(int, input().split()))
def bin_search(arr, pred, lo=0):
hi = len(arr)
while lo < hi:
mid = (lo+hi)//2
if pred(arr[mid]):
hi = mid
else:
lo = mid + 1
return lo if lo < len(arr) else None
class UndirectedGraph(object):
def __init__(self, size):
self.size = size
self.M = 0
self.edges = [set([]) for _ in range(self.size)]
def add_edge(self, u, v):
"""Adds edge to graph if it doesn't already exist."""
if v not in self.edges[u]:
self.edges[u].add(v)
self.edges[v].add(u)
self.M += 1
def neighbors(self, u):
for v in self.edges[u]:
yield v
class WeightedTree(UndirectedGraph):
def __init__(self, size, weights):
super().__init__(size)
self.weights = weights
self.labels = [None]*self.size
self.cum_weights = [None]*self.size
self.inverted = [False]*self.size
self.nextnode = 0
self.num_children = [None]*self.size
self.root = 0
def initialize(self):
self.set_labels(self.root)
self.sorted_nodes = sorted(list(range(self.size)), key = lambda x : self.cum_weights[x])
def set_labels(self, root):
self.dfs(root, set([]))
self.total_weight = self.cum_weights[self.root]
for i, cw in enumerate(self.cum_weights):
if cw > self.total_weight - cw:
self.cum_weights[i] = self.total_weight - cw
self.inverted[i] = True
def dfs(self, u, visited):
visited.add(u)
self.labels[u] = self.nextnode
self.nextnode += 1
self.cum_weights[u] = self.weights[u]
self.num_children[u] = 0
for v in self.neighbors(u):
if v not in visited:
cw, nchildren = self.dfs(v, visited)
self.cum_weights[u] += cw
self.num_children[u] += nchildren + 1
return self.cum_weights[u], self.num_children[u]
def solve(self):
tw = self.total_weight
first_idx = bin_search(self.sorted_nodes, lambda u : self.cum_weights[u] >= (tw+2)//3)
if first_idx is None:
return None
while first_idx < self.size:
first = self.sorted_nodes[first_idx]
first_cw = self.cum_weights[first]
label1 = self.labels[first]
last_child_label = label1 + self.num_children[first]
for target_w in (tw - first_cw * 2, first_cw):
second_idx = bin_search(self.sorted_nodes, lambda u: self.cum_weights[u] >= target_w)
if second_idx is not None:
while (second_idx < self.size
and self.cum_weights[self.sorted_nodes[second_idx]] == target_w):
second = self.sorted_nodes[second_idx]
is_child = label1 < self.labels[second] <= last_child_label
is_child = is_child if not self.inverted[first] else not is_child
if not is_child and self.labels[second] != label1:
return first_cw * 3 - tw
second_idx += 1
first_idx += 1
if 2*first_cw == tw:
return first_cw
return None
def read_input():
n = int(input())
weights = r()
G = WeightedTree(n, weights)
for _ in range(n-1):
u, v = r()
u -= 1
v -= 1
G.add_edge(u, v)
G.initialize()
return G
def main():
q = int(input())
for _ in range(q):
G = read_input()
ans = G.solve()
print(ans if ans is not None else -1)
main()
View More Similar Problems
Delete a Node
Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo
View Solution →Print in Reverse
Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing
View Solution →Reverse a linked list
Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio
View Solution →Compare two linked lists
You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis
View Solution →Merge two sorted linked lists
This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C
View Solution →Get Node Value
This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t
View Solution →