Back to Front Linked List - Amazon Top Interview Questions


Problem Statement :


Given a singly linked list node, reorder it such that we take: the last node, and then the first node, and then the second last node, and then the second node, etc.

Can you do it in \mathcal{O}(1)O(1) space?

Constraints

0 ≤ n ≤ 100,000 where n is the number of nodes in node

Example 1

Input

node = [0, 1, 2, 3]

Output

[3, 0, 2, 1]



Solution :



title-img




                        Solution in C++ :

LLNode* solve(LLNode* node) {
    LLNode* slow = node;
    LLNode* fast = node;
    while (fast) {
        fast = fast->next;
        if (fast) {
            fast = fast->next;
            slow = slow->next;
        }
    }
    LLNode* pre = NULL;
    LLNode* cur = slow;
    LLNode* nex;
    while (cur) {
        nex = cur->next;
        cur->next = pre;
        pre = cur;
        cur = nex;
    }
    LLNode* temp = pre;
    while (temp && node) {
        LLNode* nex1 = temp->next;
        LLNode* nex2 = node->next;
        temp->next = node;
        node->next = nex1;
        temp = nex1;
        node = nex2;
    }
    return pre;
}
                    


                        Solution in Java :

import java.util.*;

/**
 * class LLNode {
 *   int val;
 *   LLNode next;
 * }
 */
class Solution {
    public LLNode solve(LLNode node) {
        LLNode fast = node, slow = node;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        LLNode left = node, right = reverse(slow);
        LLNode prev = new LLNode();
        LLNode dummy = prev;
        while (left != null && right != null) {
            prev.next = right;
            right = right.next;
            prev.next.next = left;
            left = left.next;
            prev = prev.next.next;
        }
        prev.next = null;
        return dummy.next;
    }

    private LLNode reverse(LLNode node) {
        LLNode prev = null, curr = node, next;
        while (curr != null) {
            next = curr.next;
            curr.next = prev;
            prev = curr;
            curr = next;
        }
        return prev;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def split(self, head):
        tail1 = head
        tail2 = head

        while tail1 and tail2 and tail2.next and tail2.next.next:
            tail1 = tail1.next
            tail2 = tail2.next.next

        # now actually break the link!
        head2 = tail1.next
        tail1.next = None

        return head, head2

    def reverse(self, head):
        if not head or not head.next:
            return head
        prev, cur = None, head
        while cur:
            nxt = cur.next
            cur.next = prev
            prev = cur
            cur = nxt

        return prev

    def interleave(self, head, head2):
        resHead = res = LLNode(0)
        while head or head2:
            if head2:
                res.next = head2
                res = res.next
                head2 = head2.next

            if head:
                res.next = head
                res = res.next
                head = head.next

        return resHead.next

    def solve(self, head):
        # break into two halves
        head, head2 = self.split(head)

        # now reverse the second list ;)
        head2 = self.reverse(head2)

        # just alternately pick from each
        return self.interleave(head, head2)
                    


View More Similar Problems

Compare two linked lists

You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis

View Solution →

Merge two sorted linked lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C

View Solution →

Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

View Solution →

Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

View Solution →

Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

View Solution →

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →