title-img


Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2. You have the following three operations permitted on a word: Insert a character Delete a character Replace a character Example 1: Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e') Example 2: Input: word1 = "intention", word2 = "execution" Output: 5 Explanatio

View Solution →

Sort Colors

Given an array nums with n objects colored red, white, or blue, sort them in-place so that objects of the same color are adjacent, with the colors in the order red, white, and blue. We will use the integers 0, 1, and 2 to represent the color red, white, and blue, respectively. You must solve this problem without using the library's sort function. Example 1: Input: nums = [2,0,2,1,1,0] Output: [0,0,1,1,2,2] Example 2: Input: nums = [2,0,1] Output: [0,1,2] Constraints:

View Solution →

Largest Rectangle in Histogram

Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram. Example 1: Input: heights = [2,1,5,6,2,3] Output: 10 Explanation: The above is a histogram where width of each bar is 1. The largest rectangle is shown in the red area, which has an area = 10 units. Example 2: Input: heights = [2,4] Output: 4 Constraints: 1 <= heights.length <= 105 0 <= heights[i] <=

View Solution →

Interleaving String

Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2. An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that: s = s1 + s2 + ... + sn t = t1 + t2 + ... + tm |n - m| <= 1 The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ... Note: a + b is the concatenation of strings a and b. Example 1: Input: s1 = "aabcc", s2 = "dbbca", s3 = "

View Solution →

Recover Binary Search Tree

You are given the root of a binary search tree (BST), where the values of exactly two nodes of the tree were swapped by mistake. Recover the tree without changing its structure. Example 1: Input: root = [1,3,null,null,2] Output: [3,1,null,null,2] Explanation: 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid. Example 2: Output: [2,1,4,null,null,3] Explanation: 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST va

View Solution →