# Write a function

### Problem Statement :

```An extra day is added to the calendar almost every four years as February 29, and the day is called a leap day. It corrects the calendar for the fact that our planet takes approximately 365.25 days to orbit the sun. A leap year contains a leap day.

In the Gregorian calendar, three conditions are used to identify leap years:

1.The year can be evenly divided by 4, is a leap year, unless:
2.The year can be evenly divided by 100, it is NOT a leap year, unless:
3.The year is also evenly divisible by 400. Then it is a leap year.

This means that in the Gregorian calendar, the years 2000 and 2400 are leap years, while 1800, 1900, 2100, 2200, 2300 and 2500 are NOT leap years. Source

Given a year, determine whether it is a leap year. If it is a leap year, return the Boolean True, otherwise return False.
Note that the code stub provided reads from STDIN and passes arguments to the is_leap function. It is only necessary to complete the is_leap function.

Input Format:
Read year, the year to test.

Constraints:
1900<=year<=10^5

Output Format:
The function must return a Boolean value (True/False). Output is handled by the provided code stub.```

### Solution :

```                            ```Solution in C :

def is_leap(year):
leap = False

if year%4==0:
if year%100==0:
if year%400==0:
leap=True
else:
leap=False
else:
leap=True
else:
leap=False

return leap

year = int(input())
print(is_leap(year))```
```

## Print in Reverse

Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing

Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio

You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis

## Merge two sorted linked lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C

## Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

## Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -