Win After Last Round - Microsoft Top Interview Questions


Problem Statement :


You are given a list of integers nums of length n representing the current score of swimmers in a competition. 

There is one more round to swim and the first place winner for this round gets n points, second place n-1 points, etc. and the last place gets 1 point.

Return the number of swimmers that can still win the competition after the last round. If you tie for first in points, this still counts as winning.

Constraints

n ≤ 100,000 where n is the length of nums

Example 1

Input

nums = [8, 7, 10, 11]

Output

3

Explanation

The swimmers that currently have 8, 10 and 11 points can all win if final score is [12, 10, 12, 12]. That is, the 8 point swimmer gets first place, 7 point swimmer swimmer gets second, 10 point swimmer 
gets third, and 11 point swimmer gets last place.


Even if the 7 point swimmer gets first place and has final score of 11 points, 8 point swimmer gets 
second, the third place person would still get 2 points so the last two swimmers would still get at least 12 points. So the 7 point swimmer cannot win the competition.



Solution :



title-img




                        Solution in C++ :

int solve(vector<int>& nums) {
    // Protect vs empty vector
    if (nums.empty()) return 0;

    // Sort the array to make the rest of the code easier.
    sort(nums.begin(), nums.end());
    const int n = nums.size();

    // We need to find which final score will give us the winning score. This is done by adding the
    // smallest possible points to the best previous scores. We start by adding 1 point to the best
    // score.
    int best = nums[n - 1] + 1;
    // Keep adding more points to swimmers from the best to the worst and check if they have the new
    // max score.
    for (int i = n - 2; i >= 0; --i) {
        best = max<int>(best, nums[i] + (n - i));
    }

    // All we need to do now is to go from the smallest score, add max possible points and check if
    // it beats the winning score.
    for (int i = 0; i < n; ++i) {
        if (nums[i] + n >= best) return n - i;
    }

    return 1;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    public int solve(int[] nums) {
        int N = nums.length;
        Arrays.sort(nums);
        int best = 0; // minimum score of the winner
        for (int i = 0; i < N; i++) best = Math.max(best, nums[i] + (N - i));
        int ans = 0;
        for (int i = 0; i < N; i++) {
            if (nums[i] + N >= best)
                ans++;
        }
        return ans;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, nums):
        nums.sort(reverse=True)
        try:
            cut = max(num + i for i, num in enumerate(nums, 1))
        except ValueError:
            return 0
        for i, num in enumerate(nums):
            if num + len(nums) < cut:
                return i
        return len(nums)
                    


View More Similar Problems

Equal Stacks

ou have three stacks of cylinders where each cylinder has the same diameter, but they may vary in height. You can change the height of a stack by removing and discarding its topmost cylinder any number of times. Find the maximum possible height of the stacks such that all of the stacks are exactly the same height. This means you must remove zero or more cylinders from the top of zero or more of

View Solution →

Game of Two Stacks

Alexa has two stacks of non-negative integers, stack A = [a0, a1, . . . , an-1 ] and stack B = [b0, b1, . . . , b m-1] where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game: In each move, Nick can remove one integer from the top of either stack A or stack B. Nick keeps a running sum of the integers he removes from the two stacks. Nick is disqualified f

View Solution →

Largest Rectangle

Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle

View Solution →

Simple Text Editor

In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,

View Solution →

Poisonous Plants

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan

View Solution →

AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

View Solution →