Win After Last Round - Microsoft Top Interview Questions
Problem Statement :
You are given a list of integers nums of length n representing the current score of swimmers in a competition. There is one more round to swim and the first place winner for this round gets n points, second place n-1 points, etc. and the last place gets 1 point. Return the number of swimmers that can still win the competition after the last round. If you tie for first in points, this still counts as winning. Constraints n ≤ 100,000 where n is the length of nums Example 1 Input nums = [8, 7, 10, 11] Output 3 Explanation The swimmers that currently have 8, 10 and 11 points can all win if final score is [12, 10, 12, 12]. That is, the 8 point swimmer gets first place, 7 point swimmer swimmer gets second, 10 point swimmer gets third, and 11 point swimmer gets last place. Even if the 7 point swimmer gets first place and has final score of 11 points, 8 point swimmer gets second, the third place person would still get 2 points so the last two swimmers would still get at least 12 points. So the 7 point swimmer cannot win the competition.
Solution :
Solution in C++ :
int solve(vector<int>& nums) {
// Protect vs empty vector
if (nums.empty()) return 0;
// Sort the array to make the rest of the code easier.
sort(nums.begin(), nums.end());
const int n = nums.size();
// We need to find which final score will give us the winning score. This is done by adding the
// smallest possible points to the best previous scores. We start by adding 1 point to the best
// score.
int best = nums[n - 1] + 1;
// Keep adding more points to swimmers from the best to the worst and check if they have the new
// max score.
for (int i = n - 2; i >= 0; --i) {
best = max<int>(best, nums[i] + (n - i));
}
// All we need to do now is to go from the smallest score, add max possible points and check if
// it beats the winning score.
for (int i = 0; i < n; ++i) {
if (nums[i] + n >= best) return n - i;
}
return 1;
}
Solution in Java :
import java.util.*;
class Solution {
public int solve(int[] nums) {
int N = nums.length;
Arrays.sort(nums);
int best = 0; // minimum score of the winner
for (int i = 0; i < N; i++) best = Math.max(best, nums[i] + (N - i));
int ans = 0;
for (int i = 0; i < N; i++) {
if (nums[i] + N >= best)
ans++;
}
return ans;
}
}
Solution in Python :
class Solution:
def solve(self, nums):
nums.sort(reverse=True)
try:
cut = max(num + i for i, num in enumerate(nums, 1))
except ValueError:
return 0
for i, num in enumerate(nums):
if num + len(nums) < cut:
return i
return len(nums)
View More Similar Problems
Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →Insert a Node at the head of a Linked List
Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below
View Solution →Insert a node at a specific position in a linked list
Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e
View Solution →Delete a Node
Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo
View Solution →