Win After Last Round - Microsoft Top Interview Questions


Problem Statement :


You are given a list of integers nums of length n representing the current score of swimmers in a competition. 

There is one more round to swim and the first place winner for this round gets n points, second place n-1 points, etc. and the last place gets 1 point.

Return the number of swimmers that can still win the competition after the last round. If you tie for first in points, this still counts as winning.

Constraints

n ≤ 100,000 where n is the length of nums

Example 1

Input

nums = [8, 7, 10, 11]

Output

3

Explanation

The swimmers that currently have 8, 10 and 11 points can all win if final score is [12, 10, 12, 12]. That is, the 8 point swimmer gets first place, 7 point swimmer swimmer gets second, 10 point swimmer 
gets third, and 11 point swimmer gets last place.


Even if the 7 point swimmer gets first place and has final score of 11 points, 8 point swimmer gets 
second, the third place person would still get 2 points so the last two swimmers would still get at least 12 points. So the 7 point swimmer cannot win the competition.



Solution :



title-img




                        Solution in C++ :

int solve(vector<int>& nums) {
    // Protect vs empty vector
    if (nums.empty()) return 0;

    // Sort the array to make the rest of the code easier.
    sort(nums.begin(), nums.end());
    const int n = nums.size();

    // We need to find which final score will give us the winning score. This is done by adding the
    // smallest possible points to the best previous scores. We start by adding 1 point to the best
    // score.
    int best = nums[n - 1] + 1;
    // Keep adding more points to swimmers from the best to the worst and check if they have the new
    // max score.
    for (int i = n - 2; i >= 0; --i) {
        best = max<int>(best, nums[i] + (n - i));
    }

    // All we need to do now is to go from the smallest score, add max possible points and check if
    // it beats the winning score.
    for (int i = 0; i < n; ++i) {
        if (nums[i] + n >= best) return n - i;
    }

    return 1;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    public int solve(int[] nums) {
        int N = nums.length;
        Arrays.sort(nums);
        int best = 0; // minimum score of the winner
        for (int i = 0; i < N; i++) best = Math.max(best, nums[i] + (N - i));
        int ans = 0;
        for (int i = 0; i < N; i++) {
            if (nums[i] + N >= best)
                ans++;
        }
        return ans;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, nums):
        nums.sort(reverse=True)
        try:
            cut = max(num + i for i, num in enumerate(nums, 1))
        except ValueError:
            return 0
        for i, num in enumerate(nums):
            if num + len(nums) < cut:
                return i
        return len(nums)
                    


View More Similar Problems

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →

Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →

Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →

Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

View Solution →