Variadic functions in C


Problem Statement :


Variadic functions are functions which take a variable number of arguments. In C programming, a variadic function will contribute to the flexibility of the program that you are developing.

The declaration of a variadic function starts with the declaration of at least one named variable, and uses an ellipsis as the last parameter, e.g.

int printf(const char* format, ...);

In this problem, you will implement three variadic functions named sum(), min() and max() to calculate sums, minima, maxima of a variable number of arguments. The first argument passed to the variadic function is the count of the number of arguments, which is followed by the arguments themselves.

Input Format

    The first line of the input consists of an integer  number_of_test_cases  .
    Each test case tests the logic of your code by sending a test implementation of 3, 5 and 10 elements respectively.
    You can test your code against sample/custom input.
    The error log prints the parameters which are passed to the test implementation. It also prints the sum, minimum element and maximum element corresponding to your code.

Constraints

   1  <=  number_of_test_cases  <= 50
   1  <=  element  <= 1000000

Output Format

"Correct Answer" is printed corresponding to each correct execution of a test implementation."Wrong Answer" is printed otherwise.



Solution :



title-img


                            Solution in C :

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MIN_ELEMENT 1
#define MAX_ELEMENT 1000000

int  sum (int count,...) {
    va_list ap;
    int i, n;
    va_start(ap, count);
    n = 0;
    for (i=0;i<count;i++){
        n += va_arg(ap, int);
     }
    va_end(ap);
    return n;
}

int min(int count,...) {
    va_list ap;
    int i, current, minimum;
    va_start(ap, count);
    minimum = 1000001;
    for (i=0;i<count;i++){
        current = va_arg(ap, int);
        if (current < minimum)
            minimum = current;
    }
    va_end(ap);
    return minimum;

}

int max(int count,...) {
    va_list ap;
    int i, current, maximum;
    va_start(ap, count);
    maximum = 0;
    for (i=0;i<count;i++){
        current = va_arg(ap, int);   
        if (current > maximum)
            maximum = current;
    }
    va_end(ap);
    return maximum;

}

int test_implementations_by_sending_three_elements() {
    srand(time(NULL));
    
    int elements[3];
    
    elements[0] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[1] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[2] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    
    fprintf(stderr, "Sending following three elements:\n");
    for (int i = 0; i < 3; i++) {
        fprintf(stderr, "%d\n", elements[i]);
    }
    
    int elements_sum = sum(3, elements[0], elements[1], elements[2]);
    int minimum_element = min(3, elements[0], elements[1], elements[2]);
    int maximum_element = max(3, elements[0], elements[1], elements[2]);

    fprintf(stderr, "Your output is:\n");
    fprintf(stderr, "Elements sum is %d\n", elements_sum);
    fprintf(stderr, "Minimum element is %d\n", minimum_element);
    fprintf(stderr, "Maximum element is %d\n\n", maximum_element);
    
    int expected_elements_sum = 0;
    for (int i = 0; i < 3; i++) {
        if (elements[i] < minimum_element) {
            return 0;
        }
        
        if (elements[i] > maximum_element) {
            return 0;
        }
        
        expected_elements_sum += elements[i];
    }
    
    return elements_sum == expected_elements_sum;
}

int test_implementations_by_sending_five_elements() {
    srand(time(NULL));
    
    int elements[5];
    
    elements[0] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[1] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[2] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[3] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[4] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    
    fprintf(stderr, "Sending following five elements:\n");
    for (int i = 0; i < 5; i++) {
        fprintf(stderr, "%d\n", elements[i]);
    }
    
    int elements_sum = sum(5, elements[0], elements[1], elements[2], elements[3], elements[4]);
    int minimum_element = min(5, elements[0], elements[1], elements[2], elements[3], elements[4]);
    int maximum_element = max(5, elements[0], elements[1], elements[2], elements[3], elements[4]);
    
    fprintf(stderr, "Your output is:\n");
    fprintf(stderr, "Elements sum is %d\n", elements_sum);
    fprintf(stderr, "Minimum element is %d\n", minimum_element);
    fprintf(stderr, "Maximum element is %d\n\n", maximum_element);
    
    int expected_elements_sum = 0;
    for (int i = 0; i < 5; i++) {
        if (elements[i] < minimum_element) {
            return 0;
        }
        
        if (elements[i] > maximum_element) {
            return 0;
        }
        
        expected_elements_sum += elements[i];
    }
    
    return elements_sum == expected_elements_sum;
}

int test_implementations_by_sending_ten_elements() {
    srand(time(NULL));
    
    int elements[10];
    
    elements[0] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[1] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[2] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[3] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[4] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[5] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[6] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[7] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[8] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    elements[9] = rand() % (MAX_ELEMENT - MIN_ELEMENT + 1) + MIN_ELEMENT;
    
    fprintf(stderr, "Sending following ten elements:\n");
    for (int i = 0; i < 10; i++) {
        fprintf(stderr, "%d\n", elements[i]);
    }
    
    int elements_sum = sum(10, elements[0], elements[1], elements[2], elements[3], elements[4],
                           elements[5], elements[6], elements[7], elements[8], elements[9]);
    int minimum_element = min(10, elements[0], elements[1], elements[2], elements[3], elements[4],
                           elements[5], elements[6], elements[7], elements[8], elements[9]);
    int maximum_element = max(10, elements[0], elements[1], elements[2], elements[3], elements[4],
                           elements[5], elements[6], elements[7], elements[8], elements[9]);
    
    fprintf(stderr, "Your output is:\n");
    fprintf(stderr, "Elements sum is %d\n", elements_sum);
    fprintf(stderr, "Minimum element is %d\n", minimum_element);
    fprintf(stderr, "Maximum element is %d\n\n", maximum_element);
    
    int expected_elements_sum = 0;
    for (int i = 0; i < 10; i++) {
        if (elements[i] < minimum_element) {
            return 0;
        }
        
        if (elements[i] > maximum_element) {
            return 0;
        }
        
        expected_elements_sum += elements[i];
    }
    
    return elements_sum == expected_elements_sum;
}

int main ()
{
    int number_of_test_cases;
    scanf("%d", &number_of_test_cases);
    
    while (number_of_test_cases--) {
        if (test_implementations_by_sending_three_elements()) {
            printf("Correct Answer\n");
        } else {
            printf("Wrong Answer\n");
        }
        
        if (test_implementations_by_sending_five_elements()) {
            printf("Correct Answer\n");
        } else {
            printf("Wrong Answer\n");
        }
        
        if (test_implementations_by_sending_ten_elements()) {
            printf("Correct Answer\n");
        } else {
            printf("Wrong Answer\n");
        }
    }
    
    return 0;
}
                        








View More Similar Problems

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →

Maximum Element

You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each

View Solution →

Balanced Brackets

A bracket is considered to be any one of the following characters: (, ), {, }, [, or ]. Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and (). A matching pair of brackets is not balanced if the set of bra

View Solution →