Unfair Game


Problem Statement :


You are playing a game of Nim with a friend. The rules are are follows:

1) Initially, there are N piles of stones. Two players play alternately.

2) In each turn, a player can choose one non empty pile and remove any number of stones from it. At least one stone must be removed.

3) The player who picks the last stone from the last non empty pile wins the game.

It is currently your friend's turn. You suddenly realize that if your friend was to play optimally in that position, you would lose the game. So while he is not looking, you decide to cheat and add some (possibly 0) stones to each pile. You want the resultant position to be such that your friend has no guaranteed winning strategy, even if plays optimally. You cannot create a new pile of stones. You can only add stones, and not remove stones from a pile. What is the least number of stones you need to add?

Input Format

The first line contains the number of cases T. T cases follow. Each case contains the number N on the first line followed by N numbers on the second line. The ith number denotes si, the number of stones in the ith pile currently.

Constraints

1 <= T <= 20

2 <= N <= 15

1 <= si < 1000000000 (10^9)

Output Format

Output T lines, containing the answer for each case. If the current position is already losing for your friend, output 0.



Solution :



title-img


                            Solution in C :

In C++ :





#include<map>
#include<ctime>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<cassert>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;

int d[16];
LL dp[35][1 << 15];
const LL Inf = 30000000000LL;

inline void CheckMin(LL& a, LL b) {
	if(a > b) a = b;
};

int dd[16];
int main() {
	int T, n;
	cin >> T;
	while(T--) {
		cin >> n;
		for(int i = 0; i < n; i++)
			cin >> d[i];
		int tot = 1 << n;
		for(int i = 0; i <= 32; i++)
			for(int j = 0; j < tot; j++)
				dp[i][j] = Inf;
		dp[31][0] = 0;

		for(int i = 30; i >= 0; i--) {
			int one = 0;
			for(int j = 0; j < n; j++)
				if(d[j] & (1 << i)) one++;
			if(dp[i + 1][0] < Inf) {
				for(int j = 0; j < tot; j++) {
					int ok = 1;
					LL val = 0;
					int ct = 0;
					for(int k = 0; k < n; k++) {
						if(!(j & (1 << k))) continue;
						if(d[k] & (1 << i)) {
							ok = 0;
							break;
						}
						ct++;
						val += (1 << i) - d[k] % (1 << i);
					}
					if(!ok || (one + ct) % 2 || val >= Inf) continue;
					CheckMin(dp[i][j], dp[i + 1][0] + val);
				}
			}
			for(int j = 1; j < tot; j++) {
				if(dp[i + 1][j] >= Inf) continue;
				int ct = 0;
				for(int k = 0; k < n; k++) {
					if(!(j & (1 << k)) && (d[k] & (1 << i))) ct++;
				}
				if(ct % 2) {
					CheckMin(dp[i][j], dp[i + 1][j] + (1 << i));
					for(int k = 0; k < n; k++) {
						if(!(j & (1 << k)) && ((d[k] & (1 << i)) == 0)) {
							int ns = j | (1 << k);
							int cost = (1LL << i) - d[k] % (1 << i);
							CheckMin(dp[i][ns], dp[i + 1][j] + cost);
						}
					}
				} else {
					CheckMin(dp[i][j], dp[i + 1][j]);
				}
			}
		}

		LL ret = Inf;
		for(int i = 0; i < tot; i++) {
			if(ret > dp[0][i]) ret = dp[0][i];
		}
		cout << ret << endl;
	}
	system("pause");
	return 0;
}








In Java :







import java.util.Arrays;
import java.util.Scanner;

/*
 * To change this template, choose Tools | Templates and open the template in
 * the editor.
 */
/**
 *
 * @author muoi
 */
public class Solution {

    public static long MAX_BIT = 32;
    public static long n;
    static long a[] = new long[100];
    static long b[] = new long[100];
    static long c[] = new long[100];
    static long dd[] = new long[100];

    static long bitCheck(long a, long b) {
        return ((a) & (1l << (b)));
    }

    static long bitSet(long a, long b) {
        return ((1l << (b)));
    }

    static long check() {
        long res = 0l;


        Arrays.fill(c, 0);


        long sl = 0;

        for (long bb = MAX_BIT; bb >= 0; --bb) {
            sl = 0;
            Arrays.fill(dd, 0l);
            for (int i = 0; i < n; ++i) {
                if (bitCheck(a[i], bb) != 0l) {
                    if (c[i] <= a[i]) {

                        sl++;
                        c[i] |= bitSet(c[i], bb);
                        dd[i] = 1;

                        if (sl > b[(int)bb]) {
                            return -1;

                        }
                    }
                }
            }

            for (long ii = 0; ii < b[(int)bb] - sl; ++ii) {
                long mn = Long.MAX_VALUE;
                long pos = 0;
                for (long j = 0; j < n; ++j) {
                    if (dd[(int)j] == 0) {
                        long temp = c[(int)j];
                        temp |= bitSet(temp, bb);

                        if (temp - a[(int)j] < mn) {
                            mn = temp - a[(int)j];
                            pos = j;
                        }
                    }
                }

                dd[(int)pos] = 1l;
                c[(int)pos] |= bitSet(c[(int)pos], bb);
            }

        }

        for (long i = 0; i < n; ++i) {

            res += (c[(int)i] - a[(int)i]);
        }

        return res;
    }

    static void process() {

        if (n % 2 == 0) {
            Arrays.fill(b, n);
        } else {
            Arrays.fill(b, n - 1);
        }

        long mn = Integer.MAX_VALUE;

        for (long bb = MAX_BIT; bb >= 0; --bb) {

            while (true) {

                long temp = check();
                if (temp != -1) {

                    if (b[(int)bb] > 0) {
                        b[(int)bb] -= 2;
                    } else {
                        break;
                    }

                } else {
                    b[(int)bb] += 2;
                    break;
                }
            }

            long temp = check();

            if (temp != -1) {
                if (temp < mn) {
                    mn = temp;
                }
            }

        }

        System.out.println(mn);

    }

    public static void main(String args[]) {

        long ntest;
        Scanner scanner = new Scanner(System.in);
        ntest = scanner.nextLong();
        for (; ntest-- > 0;) {
            n = scanner.nextLong();
            for (long i = 0; i < n; ++i) {
                a[(int)i] = scanner.nextLong();
            }
            process();
        }


    }
}









In C :







#include<stdio.h>
typedef long long i64;
int main()
{
	int T;
	scanf("%d", &T);
	for (; T > 0; T--)
	{
		int n, i, j;
		i64 result = 0;
		int tmp, max, ind;
		i64 s[16];

		scanf("%d", &n);

		for (i = 0; n > i; i++)
		{
			scanf("%d", s + i);
			result += *(s + i);
		}
		while (1)
		{
			int bitcount[64]={0};
			for (i = 31; i >= 0; i--)
			{
				int i0 = 0, i1;
				for (j = 0; j < i; j++)
				{
					i0 <<= 1;
					i0 += 1;
				}
				i1 = i0;
				i1 <<= 1;
				i1 += 1;
				tmp = 0;
				for (j = 0; j < n; j++)
				{
					tmp += ((s[j] >> i) & 1);
				}
				bitcount[i]=tmp;

				if (tmp % 2 == 1 && tmp < n)
				{
					j = 0;
					max = 0;
					while (j < n)
					{
						if (((s[j] >> (i)) & 1) < 1 && (max <= (s[j] & i0)))
						{
							max = (s[j] & i0);
							ind = j;
						}

						j++;
					}
					j = ind;
					s[j] >>= i;
					s[j] += 1;
					s[j] <<= i;
					break;
				}

				if (tmp%2==1&&tmp == n)
				{
					int k=0;
					j = 0;
					max = 0;
					k=i+1;

					while(bitcount[k]==n-1)k++;
					i1=0;
					for (j = 0; j < k; j++)
					{
						i1 <<= 1;
						i1 += 1;
					}
					j=0;
					while (j < n)
					{
						if (((s[j] >> (k)) & 1) < 1
							&& (max <= (s[j] & i1)))
						{
							max = (s[j] & i1);
							ind = j;
						}

						j++;
					}
					j = ind;
					s[j] >>= (k);
					s[j] += 1;
					s[j] <<= (k);
					break;
				}
			}
			if (i < 0)
				break;
		}
		for (i = 0; i < n; i++)

			result -= s[i];
		printf("%lld\n", -result);
	}
	return 0;
}









In Python3 :





#!/bin/python3

import os
import sys

#
# Complete the unfairGame function below.
#
def unfairGame(s):
    nimSum = 0
    for i in s:
        nimSum ^= int(i)
    
    if(nimSum == 0):
        return 0

    # if(nimSum == 1):
    #     modlist = [x % 2 for x in s]
    #     if min(modlist) == 0:
    #         s[modlist.index(0)] += 1
    #     else:
    #         s[0] += 1
    #     return 1 + unfairGame(s)

    print(s)
    divider = 2 ** (len(bin(nimSum)) - 3)
    print(divider)
    modlist = [x % divider if x % (2 * divider) < divider else -1 for x in s]

    print(modlist)
    if max(modlist) < 0:
        s[s.index(max(s))] += divider
        return divider + unfairGame(s)

    increaseNumber = max(modlist)
    increase = divider - increaseNumber
    print(increase)

    s[modlist.index(increaseNumber)] += increase

    print(s)
    print()
    return increase + unfairGame(s)
        

if __name__ == '__main__':
    fptr = open(os.environ['OUTPUT_PATH'], 'w')

    t = int(input())

    nums =[1, 10, 10, 15, 27, 4, 9, 12, 26, 9, 14, 3, 25, 23, 3, 10, 3, 5, 13, 18]
    for i in nums:
        print(i)

    for t_itr in range(t):
        s_count = int(input())

        s = list(map(int, input().rstrip().split()))
        s.sort()

        result = unfairGame(s)

        fptr.write(str(result) + '\n')

    fptr.close()
                        








View More Similar Problems

Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

View Solution →

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

View Solution →

Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

View Solution →

Is This a Binary Search Tree?

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a

View Solution →