Symmetric Binary Tree - Amazon Top Interview Questions


Problem Statement :


Given the root to a binary tree root, return whether it is symmetric.

Constraints

n ≤ 100,000 where n is the number of nodes in root

Example 1

Input

root = [0, [2, [5, null, null], [1, null, null]], [2, [1, null, null], [5, null, null]]]

Output

True

Example 2

Input

root = [1, [2, null, null], [3, null, null]]

Output

False

Example 3

Input

root = [1, [2, null, null], null]

Output

False

Example 4

Input

root = [1, null, [2, null, null]]

Output

False



Solution :



title-img




                        Solution in C++ :

bool solve(Tree* root) {
    if (!root) return true;
    stack<Tree*> p, q;
    p.push(root->left), q.push(root->right);
    while (!p.empty() && !q.empty()) {
        auto m = p.top(), n = q.top();
        p.pop(), q.pop();
        if (!m && !n) continue;
        else if (!m || !n) return false;
        if (m->val != n->val)
            return false;
        p.push(m->left), p.push(m->right);
        q.push(n->right), q.push(n->left);
    } 
    return p.empty() && q.empty();
}
                    


                        Solution in Java :

import java.util.*;

/**
 * public class Tree {
 *   int val;
 *   Tree left;
 *   Tree right;
 * }
 */
class Solution {
    public boolean solve(Tree root) {
        return versionA(root);
        // return versionB(root);
    }

    // breadth first search, with padding for null child nodes
    // performance: 62%
    // This also works when Tree is non-bianry, i.e. more than 2 child nodes for a parent node.
    boolean versionA(Tree root) {
        if (root == null) {
            return true;
        }

        // a special NULL node
        Tree padding = new Tree();

        ArrayList<Tree> list = new ArrayList<>();
        list.add(root);

        while (!list.isEmpty()) {
            if (!isValid(list, padding)) {
                return false;
            }
            list = getNextLevel(list, padding);
        }
        return true;
    }

    // check as if we were checking palindrome: all the nodes at one level
    boolean isValid(ArrayList<Tree> list, Tree padding) {
        int head = 0;
        int tail = list.size() - 1;

        while (head < tail) {
            if (!isValid(list.get(head), list.get(tail), padding)) {
                return false;
            }
            head++;
            tail--;
        }

        return true;
    }

    boolean isValid(Tree a, Tree b, Tree padding) {
        if ((a == padding) && (b == padding)) {
            return true;
        }
        if ((a == padding) || (b == padding)) {
            return false;
        }
        // no padding
        return a.val == b.val;
    }

    // get all the nodes at next level, adding the spcial "padding" node when a child node is null.
    ArrayList<Tree> getNextLevel(ArrayList<Tree> list, Tree padding) {
        ArrayList<Tree> result = new ArrayList<>();

        for (Tree node : list) {
            if (node == padding) {
                continue;
            }
            if (node.left != null) {
                result.add(node.left);
            } else {
                result.add(padding);
            }

            if (node.right != null) {
                result.add(node.right);
            } else {
                result.add(padding);
            }
        }
        return result;
    }

    // this is how most people implemented. It is a better solution:
    // shorter code, less memory and better performance
    // performance: 85%
    boolean versionB(Tree root) {
        if (root == null) {
            return true;
        }

        return recursionB(root.left, root.right);
    }

    boolean recursionB(Tree a, Tree b) {
        if ((a == null) && (b == null)) {
            return true;
        }
        if ((a == null) || (b == null)) {
            return false;
        }
        if (a.val != b.val) {
            return false;
        }
        return recursionB(a.left, b.right) && recursionB(a.right, b.left);
    }
}
                    


                        Solution in Python : 
                            
# class Tree:
#     def __init__(self, val, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def solve(self, root):
        def symmetry(l, r):
            return (l is None and r is None) or bool(
                l
                and r
                and l.val == r.val
                and symmetry(l.left, r.right)
                and symmetry(l.right, r.left)
            )

        return not root or symmetry(root.left, root.right)
                    


View More Similar Problems

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →

Maximum Element

You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each

View Solution →