Sudoku Solver - Amazon Top Interview Questions


Problem Statement :


Sudoku is a puzzle where you're given a partially-filled 9 by 9 grid with digits. The objective is to fill the grid with the constraint that every row, column, and box (3 by 3 subgrid) must contain all of the digits from 1 to 9.

Implement an efficient sudoku solver that takes in an incomplete board and solves it. In the given board, the incomplete spaces will be 0.

Constraints

n = 9 where n is the number of rows and columns in matrix

Example 1

Input

matrix = [
    [0, 2, 0, 5, 0, 1, 0, 9, 0],
    [8, 0, 0, 2, 0, 3, 0, 0, 6],
    [0, 3, 0, 0, 6, 0, 0, 7, 0],
    [0, 0, 1, 0, 0, 0, 6, 0, 0],
    [5, 4, 0, 0, 0, 0, 0, 1, 9],
    [0, 0, 2, 0, 0, 0, 7, 0, 0],
    [0, 9, 0, 0, 3, 0, 0, 8, 0],
    [2, 0, 0, 8, 0, 4, 0, 0, 7],
    [0, 1, 0, 9, 0, 7, 0, 6, 0]
]

Output

[
    [4, 2, 6, 5, 7, 1, 3, 9, 8],
    [8, 5, 7, 2, 9, 3, 1, 4, 6],
    [1, 3, 9, 4, 6, 8, 2, 7, 5],
    [9, 7, 1, 3, 8, 5, 6, 2, 4],
    [5, 4, 3, 7, 2, 6, 8, 1, 9],
    [6, 8, 2, 1, 4, 9, 7, 5, 3],
    [7, 9, 4, 6, 3, 2, 5, 8, 1],
    [2, 6, 5, 8, 1, 4, 9, 3, 7],
    [3, 1, 8, 9, 5, 7, 4, 6, 2]
]



Solution :



title-img




                        Solution in C++ :

bool isValid(vector<vector<int>>& matrix, int x, int y, int val) {
    for (int j = 0; j < 9; j++) {
        if (matrix[x][j] == val) return false;
    }

    for (int i = 0; i < 9; i++) {
        if (matrix[i][y] == val) return false;
    }

    int smi = x / 3 * 3;
    int smj = y / 3 * 3;

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            if (matrix[smi + i][smj + j] == val) return false;
        }
    }

    return true;
}

bool solveSudoku(vector<vector<int>>& matrix, int i, int j) {
    if (i == 9) {
        return true;
    }

    int ni = 0, nj = 0;
    if (j == 8) {
        ni = i + 1;
        nj = 0;
    } else {
        ni = i;
        nj = j + 1;
    }

    if (matrix[i][j] != 0) {
        if (solveSudoku(matrix, ni, nj)) return true;
    } else {
        for (int po = 1; po <= 9; po++) {
            if (isValid(matrix, i, j, po)) {
                matrix[i][j] = po;
                if (solveSudoku(matrix, ni, nj)) return true;
                matrix[i][j] = 0;
            }
        }
    }

    return false;
}

vector<vector<int>> solve(vector<vector<int>>& matrix) {
    solveSudoku(matrix, 0, 0);
    return matrix;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    public int[][] solve(int[][] matrix) {
        if (matrix == null || matrix.length == 0) {
            return matrix;
        }
        helper(matrix);
        return matrix;
    }
    public boolean helper(int[][] matrix) {
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 0) {
                    for (int num = 1; num < 10; num++) {
                        if (isvalid(matrix, i, j, num)) {
                            matrix[i][j] = num;
                            if (helper(matrix))
                                return true;
                            else
                                matrix[i][j] = 0;
                        }
                    }
                    return false;
                }
            }
        }
        return true;
    }
    public boolean isvalid(int[][] matrix, int i, int j, int num) {
        // check column
        for (int row = 0; row < 9; row++) {
            if (matrix[row][j] == num)
                return false;
        }
        // check column
        for (int col = 0; col < 9; col++) {
            if (matrix[i][col] == num)
                return false;
        }
        // check borad
        for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)
            for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)
                if (matrix[row][col] == num)
                    return false;

        return true;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, matrix):
        if not matrix or not matrix[0]:
            return

        self.solve_board(matrix)

        return matrix

    def solve_board(self, matrix) -> bool:
        for i in range(9):
            for j in range(9):
                if matrix[i][j] == 0:
                    # for every possible number value, try and see if it works
                    for k in range(1, 10):
                        if self.is_valid(matrix, i, j, k):
                            matrix[i][j] = k

                            if self.solve_board(matrix):
                                return True
                            else:
                                matrix[i][j] = 0

                    # we went through every number and nothing worked
                    return False

        return True

    def is_valid(self, matrix, row, col, value):
        box_row = (row // 3) * 3
        box_col = (col // 3) * 3

        # check row
        for i in range(9):
            if matrix[i][col] == value:
                return False

        # check col
        for i in range(9):
            if matrix[row][i] == value:
                return False

        # check box subgrid
        for i in range(9):
            resolved_row = box_row + (i % 3)
            resolved_col = box_col + (i // 3)

            if matrix[resolved_row][resolved_col] == value:
                return False

        return True
                    


View More Similar Problems

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →

Maximum Element

You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each

View Solution →