Sorting: Comparator
Problem Statement :
Comparators are used to compare two objects. In this challenge, you'll create a comparator and use it to sort an array. The Player class is provided in the editor below. It has two fields: 1. name : a string. 2. score : an integer. Given an array of Player objects, write a comparator that sorts them in order of decreasing score. If 2 or more players have the same score, sort those players alphabetically ascending by name. To do this, you must create a Checker class that implements the Comparator interface, then write an int compare(Player a, Player b) method implementing the Comparator.compare(T o1, T o2) method. In short, when sorting in ascending order, a comparator function returns -1 if a < b, 0 if , a = b and 1 if a > b. Declare a Checker class that implements the comparator method as described. It should sort first descending by score, then ascending by name. The code stub reads the input, creates a list of Player objects, uses your method to sort the data, and prints it out properly. Input Format The first line contains an integer, n , the number of players. Each of the next n lines contains a player's name and score, a string and an integer. Constraints 0 <= score <= 1000 Two or more players can have the same name. Player names consist of lowercase English alphabetic letters. Output Format You are not responsible for printing any output to stdout. Locked stub code in Solution will instantiate a Checker object, use it to sort the Player array, and print each sorted element.
Solution :
Solution in C++ :
In C ++ :
#include <bits/stdc++.h>
using namespace std;
struct Player {
string name;
int score;
};
bool compare(Player a, Player b) {
if(a.score == b.score)
return a.name < b.name;
return a.score > b.score;
}
vector<Player> comparator(vector<Player> players) {
sort(players.begin(), players.end(), compare);
return players;
}
int main() {
int n;
cin >> n;
vector< Player > players;
string name;
int score;
for(int i = 0; i < n; i++){
cin >> name >> score;
Player p1;
p1.name = name, p1.score = score;
players.push_back(p1);
}
vector<Player > answer = comparator(players);
for(int i = 0; i < answer.size(); i++) {
cout << answer[i].name << " " << answer[i].score << endl;
}
return 0;
}
Solution in Java :
In Java :
import java.util.*;
class Checker implements Comparator<Player>{
public int compare(Player a, Player b) {
// If 2 Players have the same score
if(a.score == b.score){
// Order alphabetically by name
return a.name.compareTo(b.name);
}
// Otherwise, order higher score first
return ((Integer) b.score).compareTo(a.score);
}
}
Solution in Python :
In Python3 :
from functools import cmp_to_key
class Player:
def __init__(self, name, score):
self.name = name
self.score = score
def __repr__(self):
self.name = ""
self.score = 0
def comparator(a, b):
if a.score == b.score:
if a.name > b.name:
return 1
else:
return -1
if a.score > b.score:
return -1
else:
return 1
View More Similar Problems
Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →Binary Search Tree : Insertion
You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <
View Solution →Tree: Huffman Decoding
Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t
View Solution →Binary Search Tree : Lowest Common Ancestor
You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b
View Solution →Swap Nodes [Algo]
A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from
View Solution →Kitty's Calculations on a Tree
Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a
View Solution →