Rolling Median - Amazon Top Interview Questions


Problem Statement :


Implement a RollingMedian class with the following methods:

add(int val) which adds val to the data structure
median() which retrieves the current median of all numbers added
Median of [1, 2, 3] is 2 whereas median of [1, 2, 3, 4] is 2.5.

Constraints

n ≤ 100,000 where n is the number of calls to add and median

Example 1

Input

methods = ["constructor", "add", "add", "add", "median", "add", "median"]

arguments = [[], [1], [2], [3], [], [4], []]`

Output

[None, None, None, None, 2, None, 2.5]

Explanation

We first add 1, 2, and 3. The median is then 2. Then we add 4. Median is now (2 + 3) / 2 = 2.5



Solution :



title-img




                        Solution in C++ :

class RollingMedian {
    public:
    multiset<int> order;
    multiset<int>::iterator it;
    RollingMedian() {
    }

    void add(int val) {
        order.insert(val);
        if (order.size() == 1) {
            it = order.begin();
        } else {
            if (val < *it and order.size() % 2 == 0) {
                --it;
            }
            if (val >= *it and order.size() % 2 != 0) {
                ++it;
            }
        }
    }

    double median() {
        if (order.size() % 2 != 0) {
            return double(*it);
        } else {
            auto one = *it, two = *next(it);
            return double(one + two) / 2.0;
        }
    }
};
                    


                        Solution in Java :

import java.util.*;

class RollingMedian {
    PriorityQueue<Integer> small, great;

    public RollingMedian() {
        this.small = new PriorityQueue<Integer>(Collections.reverseOrder());
        this.great = new PriorityQueue<Integer>();
    }

    public void add(int val) {
        if (this.small.size() == 0 && this.great.size() == 0) {
            this.small.add(val);
        } else if (this.small.size() > this.great.size()) {
            if (this.small.peek() > val) {
                this.great.add(this.small.poll());
                this.small.add(val);
            } else {
                this.great.add(val);
            }

        } else {
            if (this.small.peek() >= val) {
                this.small.add(val);
            } else {
                this.great.add(val);
                this.small.add(this.great.remove());
            }
        }
    }

    public double median() {
        if (this.small.size() > this.great.size()) {
            return this.small.peek();
        } else {
            return (double) (this.small.peek() + this.great.peek()) / 2;
        }
    }
}
                    


                        Solution in Python : 
                            
class RollingMedian:
    def __init__(self):
        self.l = SortedList()

    def add(self, val):
        self.l.add(val)

    def median(self):
        if len(self.l) % 2 == 0:

            return (self.l[len(self.l) // 2] + self.l[(len(self.l) // 2) - 1]) / 2
        else:
            return self.l[len(self.l) // 2]
                    


View More Similar Problems

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →

Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

View Solution →

Tree : Top View

Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.

View Solution →

Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

View Solution →