Range Query on a List - Mutable - Google Top Interview Questions

Problem Statement :

```Implement a data structure with the following methods:

RangeSum(int[] nums) constructs a new instance with the given nums

total(int i, int j) returns the sum of integers from nums between [i, j). That is, nums[i] + nums[i + 1] + ... + nums[j - 1]

update(int idx, int val) updates nums[idx] with value val

Constraints

n ≤ 100,000 where n is the length of nums

k ≤ 100,000 where k is the number of calls to total

(overflows)

Example 1

Input

methods = ["constructor", "total", "update", "total"]

arguments = [[[1, 2, 5]], [0, 3], [1, 4], [0, 3]]`

Output

[None, 8, None, 10]

Explanation

r = MutableRangeSum([1,2,5,0,3,7])

r.total(0, 3) == 8 # sum([1, 2, 5])

r.update(1, 4)

r.total(0, 3) == 10 # sum([1, 4, 5])```

Solution :

```                        ```Solution in C++ :

#pragma GCC optimize("Ofast")
#pragma GCC target("tune=native")
#pragma GCC optimize("unroll-loops")
class MutableRangeSum {
int n, len;
vector<int> nums, blocks;

public:
MutableRangeSum(vector<int>& nums) {
n = (int)nums.size();
len = sqrt(n);
this->nums = nums;
blocks.assign(n / len, 0);
for (int i = 0; i < n; i++) blocks[i / len] += nums[i];
}
int total(int i, int j) {
int sum = 0;
for (int x = i; x < j;)
if (x % len == 0 && x + len < j)
sum += blocks[x / len], x += len;
else
sum += nums[x++];
return sum;
}
void update(int idx, int val) {
blocks[idx / len] += val - nums[idx];
nums[idx] = val;
}
};```
```

```                        ```Solution in Java :

import java.util.*;

class SegmentTree {
int size;
long[] operations;

SegmentTree(int n) {
this.size = 1;
while (size < n) size *= 2;
operations = new long[size * 2];
}

void set(int idx, int val) {
set(idx, val, 0, 0, size);
}

void set(int idx, int val, int x, int lx, int rx) {
if (rx - lx == 1) {
operations[x] = val;
return;
}
int mx = (rx + lx) / 2;
if (idx < mx) {
set(idx, val, 2 * x + 1, lx, mx);
} else {
set(idx, val, 2 * x + 2, mx, rx);
}
operations[x] = operations[2 * x + 1] + operations[2 * x + 2];
}

long query(int l, int r) {
return query(l, r, 0, 0, size);
}

long query(int l, int r, int x, int lx, int rx) {
if (lx >= r || l >= rx)
return 0;
if (lx >= l && rx <= r)
return operations[x];
int mx = (lx + rx) / 2;
long left = query(l, r, 2 * x + 1, lx, mx);
long right = query(l, r, 2 * x + 2, mx, rx);
return left + right;
}
}
class MutableRangeSum {
SegmentTree st;
public MutableRangeSum(int[] nums) {
st = new SegmentTree(nums.length);
for (int i = 0; i < nums.length; i++) {
st.set(i, nums[i]);
}
}

public int total(int i, int j) {
return (int) st.query(i, j);
}

public void update(int idx, int val) {
st.set(idx, val);
}
}```
```

```                        ```Solution in Python :

class Fenwick:
def __init__(self, n):
self.items = [0] * (n + 1)

def update(self, idx, val):
while idx < len(self.items):
self.items[idx] += val
idx += idx & -idx

def get_sum(self, idx):
res = 0
while idx > 0:
res += self.items[idx]
idx -= idx & -idx
return res

def get_range_sum(self, l, r):
return self.get_sum(r - 1) - self.get_sum(l - 1)

class MutableRangeSum:
def __init__(self, nums):
self.fw = Fenwick(len(nums))
for i in range(len(nums)):
self.fw.update(i + 1, nums[i])

def total(self, i, j):
return self.fw.get_range_sum(i + 1, j + 1)

def update(self, idx, val):
cur_val = self.fw.get_sum(idx + 1) - self.fw.get_sum(idx)
self.fw.update(idx + 1, val - cur_val)```
```

Tree : Top View

Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.

Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from