# No Idea! Python

### Problem Statement :

```There is an array of n integers. There are also 2 disjoint sets, A and B, each containing m integers. You like all the integers in set A and dislike all the integers in set B. Your initial happiness is o. For each i integer in the array, if i belons to A, you add 1 to your happiness. If i belong to B, you add -1 to your happiness. Otherwise, your happiness does not change. Output your final happiness at the end.

Note: Since A and B are sets, they have no repeated elements. However, the array might contain duplicate elements.

Constraints:
1.    1<=n<=10^5
2.    1<=m<=10^5
3.    1<=any integer in the input <=10^9

Input Format:

The first line contains integers n and m separated by a space.
The second line contains n integers, the elements of the array.
The third and fourth lines contain m integers, A and B, respectively.

Output Format:

Output a single integer, your total happiness.```

### Solution :

```                            ```Solution in C :

n,m=list(map(int, input().split()))
ns=list(map(int, input().split()))
h=set(map(int, input().split()))
s=set(map(int, input().split()))
res=0
for x in ns:
if x in h:
res+=1
elif x in s:
res-=1
print(res)```
```

## Array-DS

An array is a type of data structure that stores elements of the same type in a contiguous block of memory. In an array, A, of size N, each memory location has some unique index, i (where 0<=i<N), that can be referenced as A[i] or Ai. Reverse an array of integers. Note: If you've already solved our C++ domain's Arrays Introduction challenge, you may want to skip this. Example: A=[1,2,3

## 2D Array-DS

Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t

## Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

## Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

## Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

## Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu